Volume 38 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
WANG Shuang, TIAN Chenchen, NING Nanying, et al. Interfacial properties of carbon nanotubes/rubber composites: Effects of specific surface area of carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 601-611. doi: 10.13801/j.cnki.fhclxb.20200601.002
Citation: WANG Shuang, TIAN Chenchen, NING Nanying, et al. Interfacial properties of carbon nanotubes/rubber composites: Effects of specific surface area of carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 601-611. doi: 10.13801/j.cnki.fhclxb.20200601.002

Interfacial properties of carbon nanotubes/rubber composites: Effects of specific surface area of carbon nanotubes

doi: 10.13801/j.cnki.fhclxb.20200601.002
  • Received Date: 2020-04-20
  • Accepted Date: 2020-05-21
  • Available Online: 2020-06-02
  • Publish Date: 2021-02-15
  • The interface between rubber macromolecules and inorganic nano-filler is an important factor to determine the properties of elastomer composites. The peak force quantitative nanomechanical mapping mode of atomic force microscopy (AFM-QNM) was attempted to quantify the interfacial nanomechanical properties and interfacial thickness of carbon nanotubes/Soluble styrene butadiene rubber (CNT/SSBR) composites, and reveal the effects of the specific surface area of the CNT on the interfacial nanomechanical properties and interfacial thickness of CNT/SSBR composites. The results show that with the increase of specific surface area of CNT, both the interfacial nanomechanical properties and interfacial thickness of CNT/SSBR composites gradually increase, which is due to the increase in the number of immobile rubber macromolecules chains acting on the CNT surface.

     

  • loading
  • [1]
    SALVETAT J P, BRIGGS G A D, BONARD J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Physical Review Letters,1999,82(5):944-947. doi: 10.1103/PhysRevLett.82.944
    [2]
    NATSUKI T, ENDO M. Stress simulation of carbon nano-tubes in tension and compression[J]. Carbon,2004,42(11):2147-2151. doi: 10.1016/j.carbon.2004.04.022
    [3]
    HUANG H, LIU C H, WU Y, et al. Aligned carbon nanotube composite films for thermal management[J]. Advanced Materials,2005,17(13):1652-1656. doi: 10.1002/adma.200500467
    [4]
    MARCONNET A M, YAMAMOTO N, PANZER M A, et al. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density[J]. ACS Nano,2011,5(6):4818-4825. doi: 10.1021/nn200847u
    [5]
    NING N Y, JI L J, ZHANG L Q, et al. High elasticity and conductivity of elastomer composites with arrayed carbon nanotubes as nanosprings[J]. Composites Science and Technology,2015,118:78-84. doi: 10.1016/j.compscitech.2015.08.012
    [6]
    LIU J, LU Y L, TIAN M, et al. The interesting influence of nanosprings on the viscoelasticity of elastomeric polymer materials: Simulation and experiment[J]. Advanced Functional Materials,2013,23(9):1156-1163. doi: 10.1002/adfm.201201438
    [7]
    SHAO H Q, WEI H, HE J H. Dynamic properties and tire performances of composites filled with carbon nanotubes[J]. Rubber Chemistry and Technology,2018,91(3):609-620. doi: 10.5254/rct.18.82599
    [8]
    MASUDA J, TORKELSON J M. Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing[J]. Macromolecules,2008,41(16):5974-5977. doi: 10.1021/ma801321j
    [9]
    LI Y H, ZHOU P C, AN F, et al. Dynamic self-stiffening and structural evolutions of polyacrylonitrile/carbon nanotube nanocomposites[J]. ACS Applied Materials Interfaces,2017,9(6):5653-5659. doi: 10.1021/acsami.6b16029
    [10]
    BLOW C M. Polymer/particulate filler interaction-the bound rubber phenomena[J]. Polymer,1973,14(7):309-323. doi: 10.1016/0032-3861(73)90124-9
    [11]
    QU M, DENG F, KALKHORAN S, et al. Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber-carbon black nanocomposites[J]. Soft Matter,2011,7(3):1066-1077. doi: 10.1039/C0SM00645A
    [12]
    TANG Z H, HUANG J, WU X H, et al. Interface engineering toward promoting silanization by ionic liquid for high-performance rubber/silica composites[J]. Industrial & Engineering Chemistry Research,2015,54(43):10747-10756.
    [13]
    VO L T, ANASTASIADIS S H, GIANNELIS E P. Dielectric study of poly(styrene-co-butadiene) composites with carbon black, silica, and nanoclay[J]. Macromolecules,2011,44(15):6162-6171. doi: 10.1021/ma200044c
    [14]
    CARROLL B, CHENG S, SOKOLOV A P. Analyzing the interfacial layer properties in polymer nanocomposites by broadband dielectric spectroscopy[J]. Macromolecules,2017,50(16):6149-6163. doi: 10.1021/acs.macromol.7b00825
    [15]
    GRUNIN L, BRUDER M, NIKOLAEV I, et al. Standardization of results of NMR relaxation experiments in rubber investigation[J]. Applied Magnetic Resonance,2005,29(3):515-521. doi: 10.1007/BF03167181
    [16]
    LITVINOV V M, ORZA R A, KLÜPPEL M, et al. Rubber-filler interactions and network structure in relation to stress-strain behavior of vulcanized, carbon black filled EPDM[J]. Macromolecules,2011,44(12):4887-4900. doi: 10.1021/ma2007255
    [17]
    SATTAR M A, GANGADHARAN S, PATNAIK A. Design of dual hybrid network natural rubber-SiO2 elastomers with tailored mechanical and self-healing properties[J]. ACS Omega,2019,4(6):10939-10949. doi: 10.1021/acsomega.9b01243
    [18]
    WANG D, NAKAJIMA K, FUJINAMI S, et al. Characterization of morphology and mechanical properties of block copolymers using atomic force microscopy: Effects of processing conditions[J]. Polymer,2012,53(9):1960-1965. doi: 10.1016/j.polymer.2012.02.046
    [19]
    NGUYEN H K, FUJINAMI S, NAKAJIMA K. Elastic modulus of ultrathin polymer films characterized by atomic force microscopy: The role of probe radius[J]. Polymer,2016,87:114-122. doi: 10.1016/j.polymer.2016.01.080
    [20]
    NING N Y, MI T, CHU G Y, et al. A quantitative approach to study the interface of carbon nanotubes/elastomer nanocomposites[J]. European Polymer Journal,2018,102:10-18. doi: 10.1016/j.eurpolymj.2018.03.007
    [21]
    DERJAGUIN B V, MULLER V M, TOPOROV Y P. Effect of contact deformations on the adhesion of particles[J]. Journal of Colloid and Interface Science,1975,53(2):314-326. doi: 10.1016/0021-9797(75)90018-1
    [22]
    GREENWOOD J, JOHNSON K. The mechanics of adhesion of viscoelastic solids[J]. Philosophical Magazine A,1981,43(3):697-711. doi: 10.1080/01418618108240402
    [23]
    NAKAJIMA K, ITO M, WANG D, et al. Nano-palpation AFM and its quantitative mechanical property mapping[J]. Microscopy,2014,63(3):193-207. doi: 10.1093/jmicro/dfu009
    [24]
    FERREIRA O D S, GELINCK E, GRAAF D, et al. Adhesion experiments using an AFM-parameters of influence[J]. Applied Surface Science,2010,257(1):48-55. doi: 10.1016/j.apsusc.2010.06.031
    [25]
    SNEDDON I N. The relation between load and penetration in the axisymmetric boussiness problem for a punch of arbitrary profile[J]. International Journal of Engineering Science,1965,3(1):47-57. doi: 10.1016/0020-7225(65)90019-4
    [26]
    ZHONG B C, JIA Z X, DONG H H, et al. One-step approach to reduce and modify graphene oxide via vulcanization accelerator and its application for elastomer reinforcement[J]. Chemical Engineering Journal,2017,317:51-59. doi: 10.1016/j.cej.2017.02.072
    [27]
    YUE Y L, ZHANG H, ZHANG Z, et al. Polymer-filler interaction of fumed silica filled polydimethylsiloxane investigated by bound rubber[J]. Composites Science and Technology,2013,86:1-8. doi: 10.1016/j.compscitech.2013.06.019
    [28]
    TIAN C C, CHU G Y, FENG Y X, et al. Quantitatively identify and understand the interphase of SiO2/rubber nanocomposites by using nanomechanical mapping technique of AFM[J]. Composites Science and Technology,2019,170:1-6. doi: 10.1016/j.compscitech.2018.11.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (1305) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return