Volume 37 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
YANG Yunqiang, ZHANG Jiali, ZHANG Haixia, et al. Preparation of poly 3,4-ethylenedioxythiophene/nanoporous gold composite electrode and its application in supercapacitors[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3160-3167. doi: 10.13801/j.cnki.fhclxb.20200403.001
Citation: YANG Yunqiang, ZHANG Jiali, ZHANG Haixia, et al. Preparation of poly 3,4-ethylenedioxythiophene/nanoporous gold composite electrode and its application in supercapacitors[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3160-3167. doi: 10.13801/j.cnki.fhclxb.20200403.001

Preparation of poly 3,4-ethylenedioxythiophene/nanoporous gold composite electrode and its application in supercapacitors

doi: 10.13801/j.cnki.fhclxb.20200403.001
  • Received Date: 2020-01-21
  • Accepted Date: 2020-03-18
  • Available Online: 2020-04-03
  • Publish Date: 2020-12-15
  • The poly 3,4-ethylenedioxythiophene/nanoporous gold (PEDOT/NPG) composite electrode materials were prepared by electrochemically polymerizing monomer 3,4-ethylenedioxythiophene (EDOT) onto NPG with high conductivity and large specific surface area by one-step method. The scanning electron microscope (SEM), transmission electron microscope (TEM), Raman spectroscopy (Raman) and X-ray energy spectrometer were used to analyze the morphological structure and elemental composition of the composite electrode material. The electrochemical performance of the electrochemical workstation was studied systematically. The PEDOT/NPG electrode material has a mass specific capacitance of 555 F/g at low current density of 3 A/g, and its energy density and power density are 177.58 W·h/kg and 1.73 kW/kg, respectively. The electrode material can still maintain 91.5% of the maximum capacitance after 2 000 cyclic voltammetry test and has excellent electrochemical performance.

     

  • loading
  • [1]
    CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials,2017,16(1):16-22. doi: 10.1038/nmat4834
    [2]
    SINGH S, JAIN S, VENKATESWARAN P S, et al. Hydrogen: A sustainable fuel for future of the transport sector[J]. Renewable and Sustainable Energy Reviews,2015,51:623-633. doi: 10.1016/j.rser.2015.06.040
    [3]
    RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy,2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013
    [4]
    WANG J G, KANG F, WEI B. Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science,2015,74:51-124. doi: 10.1016/j.pmatsci.2015.04.003
    [5]
    DU W, WANG X, ZHAN J, et al. Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors[J]. Electrochimica Acta,2019,296:907-915. doi: 10.1016/j.electacta.2018.11.074
    [6]
    吴可嘉, 董丽敏, 张琬祺, 等. 用于超级电容器的还原氧化石墨烯/NiMnO复合材料的电化学性能[J]. 复合材料学报, 2018, 35(5):1260-1268.

    WU K J, DONG L M, ZHANG W Q, et al. Electrochemical performance of reduced graphene oxide/NiMnO compo-sites for supercapacitors[J]. Acta Materiae Compositae Sinica,2018,35(5):1260-1268(in Chinese).
    [7]
    KALAMBATE P K, DAR R A, KARNA S P, et al. High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode[J]. Journal of Power Sources,2015,276:262-270. doi: 10.1016/j.jpowsour.2014.11.130
    [8]
    SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
    [9]
    李赵华, 刘成宝, 钱君超, 等. 超级电容器用CeO2-MnO/3D石墨烯复合材料的制备[J]. 复合材料学报, 2017, 34(2):423-429.

    LI Z H, LIU C B, QIAN J C, et al. Preparation of CeO2-MnO/3D graphene composites for supercapacitors[J]. Acta Materiae Compositae Sinica,2017,34(2):423-429(in Chinese).
    [10]
    KIM S I, KIM S W, JUNG K, et al. Ideal nanoporous gold based supercapacitors with theoretical capacitance and high energy/power density[J]. Nano Energy,2016,24:17-24. doi: 10.1016/j.nanoen.2016.03.027
    [11]
    CHEN L Y, KANG J L, HOU Y, et al. High-energy-densitynonaqueous MnO2@nanoporous gold based supercapacitors[J]. Journal of Materials Chemistry A,2013,1(32):9202-9207. doi: 10.1039/c3ta11480e
    [12]
    XU J, WANG K, ZU S Z, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J]. ACS Nano,2010,4(9):5019-5026. doi: 10.1021/nn1006539
    [13]
    LIU R, WANG J, SUN T, et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: A self-charging power unit with a total efficiency of 10.5%[J]. Nano Letters,2017,17(7):4240-4247. doi: 10.1021/acs.nanolett.7b01154
    [14]
    AMBADE R B, AMBADE S B, SALUNKHE R R, et al. Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density[J]. Journal of Materials Chemistry A,2016,4(19):7406-7415. doi: 10.1039/C6TA00683C
    [15]
    SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources,2011,196(1):1-12. doi: 10.1016/j.jpowsour.2010.06.084
    [16]
    RYU K S, KIM K M, PARK N G, et al. Symmetric redox supercapacitor with conducting polyaniline electrodes[J]. Journal of Power Sources,2002,103(2):305-309. doi: 10.1016/S0378-7753(01)00862-X
    [17]
    ROBERTS M E, WHEELER D R, MCKENZIE B B, et al. High specific capacitance conducting polymer supercapacitor electrodes based on poly (tris (thiophenylphenyl) amine)[J]. Journal of Materials Chemistry,2009,19(38):6977-6979. doi: 10.1039/b916666a
    [18]
    LEI C, WILSON P, LEKAKOU C. Effect of poly (3,4-ethylenedioxythiophene)(PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors[J]. Journal of Power Sources,2011,196(18):7823-7827. doi: 10.1016/j.jpowsour.2011.03.070
    [19]
    ARADILLA D, ESTRANY F, ARMELIN E, et al. Ultraporous poly (3,4-ethylenedioxythiophene) for nanometric electrochemical supercapacitor[J]. Thin Solid Films,2012,520(13):4402-4409. doi: 10.1016/j.tsf.2012.02.058
    [20]
    TONG L, SKORENKO K H, FAUCETT A C, et al. Vapor-phase polymerization of poly (3,4-ethylenedioxythiophene)(PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors[J]. Journal of Power Sources,2015,297:195-201. doi: 10.1016/j.jpowsour.2015.06.128
    [21]
    LIU Y H, XU J L, SHEN S, et al. High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications[J]. Journal of Materials Chemistry A,2017,5(19):9032-9041. doi: 10.1039/C7TA01947E
    [22]
    WANG N, HAN G, SONG H, et al. Integrated flexible supercapacitor based on poly (3, 4-ethylene dioxythiophene) deposited on Au/porous polypropylene film/Au[J]. Journalof Power Sources,2018,395:228-236. doi: 10.1016/j.jpowsour.2018.05.074
    [23]
    LIU G, SHI Y, ZHOU C, et al. A cross-linked sheet structured poly (3,4-ethylenedioxythiophene) grown on Ni foam: Morphology control and application for long-life cyclic asymmetric supercapacitor[J]. International Journal of Hydrogen Energy,2020,45(11):6120-6127.
    [24]
    LANG X, HIRATA A, FUJITA T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology,2011,6(4):232-236. doi: 10.1038/nnano.2011.13
    [25]
    MENG F, DING Y. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities[J]. Advanced Materials,2011,23(35):4098-4102. doi: 10.1002/adma.201101678
    [26]
    KANG J, CHEN L, HOU Y, et al. Electroplated thick manganese oxide films with ultrahigh capacitance[J]. Advanced Energy Materials,2013,3(7):857-863. doi: 10.1002/aenm.201201046
    [27]
    ZHANG S W, YIN B S, LIU C, et al. Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured nanobelts for supercapacitor[J]. Chemical Engineering Journal,2017,312:296-305. doi: 10.1016/j.cej.2016.11.144
    [28]
    XU K, LI W, LIU Q, et al. Hierarchical mesoporous NiCo2O4@MnO2 core-shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2014,2(13):4795-4802. doi: 10.1039/c3ta14647b
    [29]
    WAN C, JIAO Y, LI J. A cellulose fibers-supported hierarchical forest-like cuprous oxide/copper array architecture as a flexible and free-standing electrode for symmetric supercapacitors[J]. Journal of Materials Chemistry A,2017,5(33):17267-17278. doi: 10.1039/C7TA04994C
    [30]
    JIA L, SHI Y, ZHANG Q, et al. Green synthesis of ultrafine Methyl-cellulose-derived porous carbon/MnO2 nanowires for asymmetric supercapacitors and flexible pattern stamping[J]. Applied Surface Science,2018,462:923-931. doi: 10.1016/j.apsusc.2018.08.213
    [31]
    SU X L, FU L, CHENG M Y, et al. 3D nitrogen-doped graphene aerogel nanomesh: Facile synthesis and electrochemical properties as the electrode materials for supercapacitors[J]. Applied Surface Science,2017,426:924-932. doi: 10.1016/j.apsusc.2017.07.251
    [32]
    JIANG L, SUI Y, QI J, et al. Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-rGO films for high energy density asymmetric supercapacitor[J]. Applied Surface Science,2017,426:148-159. doi: 10.1016/j.apsusc.2017.07.175
    [33]
    TANG Z, TANG C, GONG H. A high energy density asymmetric supercapacitor fromnano-architectured Ni(OH)2/carbon nanotube electrodes[J]. Advanced Functional Materials,2012,22(6):1272-1278. doi: 10.1002/adfm.201102796
    [34]
    FAN Z, YAN J, WEI T, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J]. Advanced Functional Materials,2011,2(12):2366-2375.
    [35]
    HOU Y, CHEN L, ZHANG L, et al. Ultrahigh capacitance of nanoporous metal enhanced conductive polymer pseudocapacitors[J]. Journal of Power Sources,2013,225:304-310. doi: 10.1016/j.jpowsour.2012.10.067
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (983) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return