Volume 38 Issue 5
May  2021
Turn off MathJax
Article Contents
WANG Jihua, LIU Junwang, WANG Chunfeng, et al. Dielectric properties and preparation of microcapacitor of polyvinylidene fluoride matrix composite[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1426-1434. doi: 10.13801/j.cnki.fhclxb.20200922.006
Citation: WANG Jihua, LIU Junwang, WANG Chunfeng, et al. Dielectric properties and preparation of microcapacitor of polyvinylidene fluoride matrix composite[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1426-1434. doi: 10.13801/j.cnki.fhclxb.20200922.006

Dielectric properties and preparation of microcapacitor of polyvinylidene fluoride matrix composite

doi: 10.13801/j.cnki.fhclxb.20200922.006
  • Received Date: 2020-06-22
  • Accepted Date: 2020-09-07
  • Available Online: 2020-09-22
  • Publish Date: 2021-05-01
  • In order to effectively improve the dielectric properties of polymer matrix composites and consider the coexistence of high dielectric constant and low filler content, the microcapacitor structure was constructed in the barium titanate-graphene/polyvinylidene fluoride (BT-GNP/PVDF) composite system with PVDF as the matrix resin, BT and GNP as the dielectric filler and conductive filler respectively. The GNP/PVDF films and BT-GNP/PVDF composite films were prepared by solution method and hot pressing method. The results show that the BT and GNP fillers can be evenly distributed in both the BT-GNP/PVDF composite films and they are easier to form microcapacitor structure in the hot-pressing films. With the introduction of BT, the structure of the microcapacitor formed between GNP and BT is more conducive to the improvement of the dielectric constant of the BT-GNP/PVDF composite films. The dielectric constant of BT-GNP/PVDF composite films with BT content more than 50wt% are not lower than that of GNP/PVDF composites. The dielectric constant of BT-GNP/PVDF composite film with BT content of 50wt% is higher than that of the BT-GNP/PVDF composite films with BT content of 35wt%, 60wt% and 70wt%, respectively, the maximum is about 43, equivalent to 1.5 times of GNP/PVDF film with GNP content of 0.8wt%. The dielectric loss of BT-GNP/PVDF composite film with BT content of 50wt% is also smaller than other systems, the maximum value is no more than 0.09 and the minimum value is about 0.02. The conductivity of BT-GNP/PVDF composite films are in consistant change trend and there is no significant difference between them.

     

  • loading
  • [1]
    HUANG J J, ZHANG Y. Liquid phase sintering of barium titanate ceramics for high energy storage density capacitors[J]. Key Engineering Materials,2008,368-372:40-42.
    [2]
    黄炎光, 易鹭. 热老化对干式变压器环氧树脂介电性能的影响[J]. 绝缘材料, 2016, 49(9):53-56.

    HUANG Y G, YI L. Effect of thermal aging on dielectric properties of epoxy resin for dry type transformer[J]. Insulating Materials,2016,49(9):53-56(in Chinese).
    [3]
    KOUSKSO T, BRUEL P, JAMIL A, et al. Energy storage: Applications and challenges[J]. Solar Energy Materials and Solar Cells,2014,120(1):59-80.
    [4]
    于杰, 王继辉, 王钧. 碳纤维/树脂基复合材料导电性能研究[J]. 武汉理工大学学报, 2005, 27(5):24-26. doi: 10.3321/j.issn:1671-4431.2005.05.008

    YU J, WANG J H, WANG J. Study on electrical conductivity of carbon fiber/resin matrix composites[J]. Journal of Wuhan University of Technology,2005,27(5):24-26(in Chinese). doi: 10.3321/j.issn:1671-4431.2005.05.008
    [5]
    CORREIA T M, MCMILLEN M, ROKOSZ M K, et al. A lead-free and high-energy density ceramic for energy storage applications[J]. Journal of the American Ceramic Society,2013,96(9):699-2702.
    [6]
    BAI Y, CHENG Z Y, BHARTI V, et al. High dielectric constant ceramic powder polymer composites[J]. Applied Physics Letters,2000,76(25):3804-3806.
    [7]
    PRATEEK, THAKUR V K, GUPTA R K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects[J]. Chemical Reviews,2016,116(7):4260-4317.
    [8]
    JILLEK W, YUNG W K C. Embedded components in printed circuit boards: A processing technology review[J]. International Journal of Advanced Manufacturing Technology,2005,25(3-4):350-360.
    [9]
    倪新亮, 金凡亚, 沈丽如, 等. 等离子体处理碳纤维/树脂复合材料[J]. 复合材料学报, 2015, 32(3):721-727.

    NI X L, JIN F Y, SHEN L R, et al. Plasma treatment of carbon fiber/resin composites[J]. Acta Materiae Composite Sinica,2015,32(3):721-727(in Chinese).
    [10]
    ZUO Z H, ZHAN Q F, CHEN B, et al. Enhanced energy storage behaviors in free-standing antiferroelectric Pb(Zr0.95Ti0.05)O3 thin membranes[J]. Chinese Physics B,2016,25(8):087702.
    [11]
    SHANG J, ZHANG Y, YU L, et al. Fabrication and enhanced dielectric properties of graphene-polyvinylidene fluoride functional hybrid films with a polyaniline interlayer[J]. Journal of Materials Chemistry A,2013,1(3):884-890.
    [12]
    ZHAO X, ZHAO J, CAO J P, et al. Tuning the dielectric properties of polystyrene/poly(vinylidene fluoride) blends by selectively localizing carbon black nanoparticles[J]. The Journal of Physical Chemistry B,2013,117(8):2505-2515.
    [13]
    CHON J, YE S, CHA K J, et al. High-κ dielectric sol-gel hybrid materials containing barium titanate nanoparticles[J]. Chemistry of Materials,2010,22(19):5445-5452.
    [14]
    LEE K H, KAO J, PARIZI S S, et al. Dielectric properties of barium titanate supramolecular nanocomposites[J]. Nanoscale,2014,6(7):3526-3531.
    [15]
    ZHU W, MA J, NAN X, et al. Study on dispersion of reduced graphene oxide on physical performance of polyvinylidene fluoride composites by Hansen solubility parameters[J]. Colloid & Polymer Science,2019,297(2):213-224.
    [16]
    RAULO A, SUIN S, PARIA S, et al. Expanded graphite (EG) as a potential filler in the reduction of percolation threshold of multiwall carbon nanotubes (MWCNT) in the PMMA/HDPE/EG/MWCNT nanocomposites[J]. Polymer Composites,2016,37(7):2070-2082.
    [17]
    IVONNE O, MOHAMMAD A, UTTANDARAMAN S. Carbon nanotube induced double percolation in polymer blends: Morphology, rheology and broadband dielectric properties[J]. Polymer,2017,114:122-134.
    [18]
    XIANG L, TIAN J W, HU P H, et al. Improved dielectric performance of polypropylene/multiwalled carbon nanotube nanocomposites by solid-phase orientation[J]. Journal of Applied Polymer Science,2015,133(3):42893.
    [19]
    POORALI M S, BAGHERI-MOHAGHEGHI M M. Comparison of chemical and physical reduction methods to prepare layered graphene by graphene oxide: Optimization of the structural properties and tuning of energy band gap[J]. Journal of Materials Science: Materials in Electronics,2016,27(1):260-271.
    [20]
    RAJI M, ESSABIR H, RODRIGUE D, et al. Influence of graphene oxide and graphene nanosheet on the properties of polyvinylidene fluoride nanocomposites[J]. Polymer Composites,2018,39(8):2932-2941.
    [21]
    LEE J, LIM S. Polarization behavior of polyvinylidene fluoride films with the addition of reduced graphene oxide[J]. Journal of Industrial and Engineering Chemistry,2018,67:478-485.
    [22]
    ALHUSAIKI-ALGHAMDI H M. Thermal and electrical properties of graphene incorporated into polyvinylidene fluoride/polymethyl methacrylate nanocomposites[J]. Polymer Composites,2016,38:246-253.
    [23]
    LV D Y, ZUO R Z. Evolution of crystallographic grain orientation and anisotropic properties of (K0.5Na0.5)NbO3 ceramics using BaTiO3 templates by reactive templated grain growth[J]. Journal of Alloys and Compounds,2013,560:62-66.
    [24]
    CHOI S H, KIM I D, HONG J M, et al. Effect of the dispersibility of BaTiO3 nanoparticles in BaTiO3/polyimide composites on the dielectric properties[J]. Materials Letters,2007,61(11-12):2478-2481.
    [25]
    GUAN S S, LI H, ZHAO S G, et al. Novel three-component nanocomposites with high dielectric permittivity and low dielectric loss co-filled by carboxyl-functionalized multi-walled nanotube and BaTiO3[J]. Composites Science and Technology,2018,158(12):79-85.
    [26]
    钟少龙, 党智敏. 高储能密度低损耗介电高分子功能复合材料的研究进展[J]. 绝缘材料, 2016, 49(12):13-18.

    ZHONG S L, DANG Z M. Research progress of dielectric polymer functional composites with high energy storage density and low loss[J]. Insulating Materials,2016,49(12):13-18(in Chinese).
    [27]
    SHI J, FAN H Q, LIU X, et al. Bi deficiencies induced high permittivity in lead-free BNBT-BST high-temperature dielectrics[J]. Journal of Alloys and Compounds,2015,627:463-467.
    [28]
    LIN J Q, CHEN G R, YANG W L, et al. New potassium sodium niobate/poly(vinylidene fluoride) functional composite films with high dielectric permittivity[J]. Journal of Polymer Research,2016,23(8):152.
    [29]
    WANG X, LI Z W. Dilelectric properties of CB@TiO2/BaTiO3/epoxy composites[J]. Journal of Materials Science Materials in Electronics,2017,28:6071-6078.
    [30]
    LUO S, YU S, SUN R, et al. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: Toward high dielectric constant and suppressed loss[J]. ACSApplied Materials & Interfaces,2014,6(1):176-182.
    [31]
    LI Y M, YANG W H, DING S J, et al. Tuning dielectric properties and energy density of poly(vinylidene fluoride) nanocomposites by quasi core-shell structured BaTiO3@graphene oxide hybrids[J]. Journal of Materials Science Materials in Electronics,2018,29:1082-1092.
    [32]
    沈烨, 赵亮, 赵中国, 等. 微注条件下PP/PVDF共混物结构与介电性能的研究[J]. 塑料工业, 2019, 47(7):71-76. doi: 10.3969/j.issn.1005-5770.2019.07.018

    SHEN Y, ZHAO L, ZHAO Z G, et al. Study on the structure and dielectric properties of PP/PVDF blends under microinjection[J]. Plastics Industry,2019,47(7):71-76(in Chinese). doi: 10.3969/j.issn.1005-5770.2019.07.018
    [33]
    王建国. 分形及渗流理论在材料科学中的应用[J]. 深圳大学学报(理工版), 1990, 7(1-2):86-96.

    WANG J G. Application of fractal and percolation theory in materials science[J]. Journal of Shenzhen University (Science and Engineering),1990,7(1-2):86-96(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (1250) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return