Volume 38 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
XIN Guoxiang, WANG Mengmeng, ZHAI Yao, et al. One-step synthesis of polyaniline nanowire/self-supported graphene composite with excellent cycling stability[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1272-1282. doi: 10.13801/j.cnki.fhclxb.20200730.001
Citation: XIN Guoxiang, WANG Mengmeng, ZHAI Yao, et al. One-step synthesis of polyaniline nanowire/self-supported graphene composite with excellent cycling stability[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1272-1282. doi: 10.13801/j.cnki.fhclxb.20200730.001

One-step synthesis of polyaniline nanowire/self-supported graphene composite with excellent cycling stability

doi: 10.13801/j.cnki.fhclxb.20200730.001
  • Received Date: 2020-06-01
  • Accepted Date: 2020-07-22
  • Available Online: 2020-07-31
  • Publish Date: 2021-04-08
  • The polyaniline nanowire/self-supported graphene (PANI/SGr) composite was synthesized by one-step electrochemical exfoliation and electrodeposition method using graphite paper. The directional migration of electrolyte ions and the electropolymerization of aniline monomers through the electrical field simultaneously occurred in the mixed solution including Na2SO4, HCl and aniline (An) monomers. The stability of the PANI/SGr composite is enhanced by the combination of the new-born SGr with high activity and PANI. The uniform distribution of the nanowire-like PANI is achieved on the surface of the SGr. The PANI nanowires lead to the formation of the three-dimensional network architecture, where the existence of pores facilitates the diffusion of electrolyte ions into the internal structure of the PANI/SGr composite. The electrochemical tests of the PANI/SGr composite were conducted as a supercapacitor electrode material. The specific capacitance of 453 F·g−1 at a scan rate of 2 mV·s−1 is achieved. The rate capability of the PANI/SGr composite at the current densities of 0.5-10 A·g−1 is up to 73.1%. The cycling stability of the PANI/SGr composite is as high as 87.3% after 10000 discharge-charge cycles at the current density of 1 A·g−1. All of these results indicate that the PANI/SGr composite possesses good capacitive performance and excellent cycling stability. The PANI/SGr composite is promising for supercapacitor electrode materials.

     

  • loading
  • [1]
    赵文誉, 王振祥, 郑玉婴, 等. NiS2/三维多孔石墨烯复合材料作为超级电容器电极材料的电化学性能[J]. 复合材料学报, 2020, 37(2):422-431.

    ZHAO Wenyu, WANG Zhenxiang, ZHENG Yuying, et al. Electrochemical performance of NiS2/3D porous reduce graphene oxide composite as electrode material for supercapacitors[J]. Acta Materiae Compositae Sinica,2020,37(2):422-431(in Chinese).
    [2]
    MASIKHWA T M, MADITO M J, BELLO A, et al. High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite[J]. Journal of Colloid and Interface Science,2017,488:155-165. doi: 10.1016/j.jcis.2016.10.095
    [3]
    梁旭, 贾宇峰, 刘宗怀, 等. 增强电容性能的高度可压缩的碳海绵上生长氧化铁纳米片[J]. 物理化学学报, 2020, 3(2):1903034. doi: 10.3866/PKU.WHXB201903034

    LIANG Xu, JIA Yufeng, LIU Zonghuai, et al. Growing iron oxide nanosheets on highly compressible carbon sponge for enhanced capacitive performance[J]. Acta Physico-Chimica Sinica,2020,3(2):1903034(in Chinese). doi: 10.3866/PKU.WHXB201903034
    [4]
    张长欢, 李念武, 姚胡蓉, 等. 具有三维导电网络结构的锡纳米颗粒/石墨烯纳米片复合电极材料的储镁性能研究[J]. 化学学报, 2017, 75(2):206-211. doi: 10.6023/A16100542

    ZHANG Changhuan, LI Nianwu, YAO Hurong, et al. Synthesis of Sn nanoparticles/graphene nanosheet hybrid electrode material with three-dimensional conducting network for magnesium storage[J]. Acta Chimica Sinica,2017,75(2):206-211(in Chinese). doi: 10.6023/A16100542
    [5]
    关芳兰, 李昕, 张群, 等. 激光直写微型 RGO/MWCNT/CF平面柔性超级电容器的制备及性能[J]. 高等学校化学学报, 2020, 41(2):300-307. doi: 10.7503/cjcu20190480

    GUAN Fanglan, LI Xin, ZHANG Qun, et al. Fabrication and capacitance performance of laser-machined RGO/MWCNT/CF in-plane flexible micro-supercapacitor[J]. Chemical Journal of Chinese Universities,2020,41(2):300-307(in Chinese). doi: 10.7503/cjcu20190480
    [6]
    KUILA T, BOSE S, MISHRA A K, et al. Chemical functionalization of graphene and its applications[J]. Progress in Materials Science,2012,57(7):1061-1105. doi: 10.1016/j.pmatsci.2012.03.002
    [7]
    LI D, MÜLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2008,3(2):101-105. doi: 10.1038/nnano.2007.451
    [8]
    LIU F, SONG S, XUE D, et al. Folded structured graphene paper for high performance electrode materials[J]. Advanced Materials,2012,24(8):1089-1094. doi: 10.1002/adma.201104691
    [9]
    李学航, 俞慧涛, 王伟仁, 等. 自支撑三维功能化石墨烯/聚苯胺电极材料的制备及超级电容性能[J]. 高等学校化学学报, 2017, 38(12):2306-2312. doi: 10.7503/cjcu20170110

    LI Xuehang, YU Huitao, WANG Weiren, et al. Preparation and performance in supercapacitor of three-dimensional functionalized graphene/polyaniline freestanding electrode materials[J]. Chemical Journal of Chinese Universities,2017,38(12):2306-2312(in Chinese). doi: 10.7503/cjcu20170110
    [10]
    姚舜. 聚苯胺超级电容器材料的性能研究与应用[D]. 淮南: 安徽理工大学, 2019.

    YAO Shun. Preparation of polyaniline material and its application in supercapacitors[D]. Huainan: Anhui University of Science and Technology, 2019(in Chinese).
    [11]
    XU Y, TAO Y, LI H, et al. Dual electronic-ionic conductivity of pseudo-capacitive filler enables high volumetric capacitance from dense graphene micro-particles[J]. Nano Energy,2017,36:349-355. doi: 10.1016/j.nanoen.2017.04.054
    [12]
    YANG Y, XI Y, LI J, et al. Flexible supercapacitors based on polyaniline arrays coated graphene aerogel electrodes[J]. Nanoscale Research Letters,2017,12:394. doi: 10.1186/s11671-017-2159-9
    [13]
    GAO S Y, ZHANG L, QIAO Y, et al. Electrodeposition of polyaniline on three-dimensional graphene hydrogel as a binder-free supercapacitor electrode with high power and energy densities[J]. RSC Advances,2016,6(64):58854-58861. doi: 10.1039/C6RA06263F
    [14]
    XIN G, WANG Y, LIU X, et al. Preparation of self-supporting graphene on flexible graphite sheet and electrodepo-sition of polyaniline for supercapacitor[J]. Electrochimica Acta,2015,167:254-261. doi: 10.1016/j.electacta.2015.03.181
    [15]
    李大敏. 聚苯胺及其衍生物复合薄膜电致变发射率性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    LI Damin. Variable infrared emissivity properties of PANI and its derivatives composite films[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [16]
    卢凤霞. 聚苯胺基复合材料的制备及其在超级电容器中的应用[D]. 厦门: 华侨大学, 2017.

    LU Fengxia. Prepararion of polyaniline based composites and their application in supercapacitors[D]. Xiamen: Huaqiao University, 2017(in Chinese).
    [17]
    赵喜燕. 电聚合制备聚苯胺/金刚石复合材料及其电化学性质[D]. 秦皇岛: 燕山大学, 2010.

    ZHAO Xiyan. Electropolymerization and electrochemical properties of polyaniline/diamond composite[D]. Qinhuangdao: Yanshan University, 2010(in Chinese).
    [18]
    YANG C, ZHANG L, HU N, et al. Rational design of sandwiched polyaniline nanotubes/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors[J]. Chemical Engineering Journal,2017,309:89-97. doi: 10.1016/j.cej.2016.09.115
    [19]
    ZHANG Q, LI Y, FENG Y, et al. Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor[J]. Electrochimica Acta,2013,90:95-100. doi: 10.1016/j.electacta.2012.11.035
    [20]
    CHIN S Y, ABDULLAH T K, MARIATTI M. One-step synthesis of conductive graphene/polyaniline nanocompo-sites using sodium dodecylbenzenesulfonate: Preparation and properties[J]. Journal of Materials Science: Materials in Electronic,2017,28(24):18418-18428. doi: 10.1007/s10854-017-7788-3
    [21]
    顾鹏程, 宋爽, 张塞, 等. 聚苯胺改性Mxene复合材料对U(VI)的高效富集及机理研究[J]. 化学学报, 2018, 76(9):701-708. doi: 10.6023/A18060245

    GU Pengcheng, SONG Shuang, ZHANG Sai, et al. Enrichment of U(VI) on polyaniline modified mxene composites studied by batch experiment and mechanism investigation[J]. Acta Chimica Sinica,2018,76(9):701-708(in Chinese). doi: 10.6023/A18060245
    [22]
    YU J, XIE F, WU Z, et al. Flexible metallic fabric supercapacitor based on graphene/polyaniline composites[J]. Electrochimica Acta,2018,259:968-974. doi: 10.1016/j.electacta.2017.11.008
    [23]
    GENG X, YI R, YU Z, et al. Isothermal sulfur condensation into carbon nanotube/nitrogen-doped graphene composite for high performance lithium-sulfur batteries[J]. Journal of Materials Science: Materials in Electronic,2018,29(12):10071-10081. doi: 10.1007/s10854-018-9051-y
    [24]
    MELLO H J N P D, MULATO M. Influnence of galvanostatic electrodeposition parameters on the structure-property relationships of polyaniline thin films and their use as potentiometric and optical pH sensors[J]. Thin Solid Films,2018,656:14-21. doi: 10.1016/j.tsf.2018.04.022
    [25]
    刘奔, 张行颖, 陈韶云, 等. 一维有序聚苯胺纳米阵列的制备及电化学储能性能[J]. 高等学校化学学报, 2019, 40(3):498-507. doi: 10.7503/cjcu20180590

    LIU Ben, ZHANG Xingying, CHEN Shaoyun, et al. Preparation and electrochemical energy storage performance of one dimensional orderly polyaniline nanowires array[J]. Chemical Journal of Chinese Universities,2019,40(3):498-507(in Chinese). doi: 10.7503/cjcu20180590
    [26]
    赵梁成, 李斌, 武思蕊, 等. 功能三维石墨烯-多壁碳纳米管/热塑性聚氨酯复合材料的制备及性能[J]. 复合材料学报, 2020, 37(2):242-251.

    ZHAO Liangcheng, LI Bin, WU Sirui, et al. Preparation and properties of 3D graphene-multi walled carbon nanotube/thermoplastic polyurethane composites[J]. Acta Materiae Compositae Sinica,2020,37(2):242-251(in Chinese).
    [27]
    BANDYOPADHYAY P, KUILA T, BALAMURUGAN J, et al. Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application[J]. Chemical Engineering Journal,2017,308:1174-1184. doi: 10.1016/j.cej.2016.10.015
    [28]
    YU H, XIN G, GE X, et al. Porous graphene-polyaniline nanoarrays composite with enhanced interface bonding and electrochemical performance[J]. Composites Science and Technology,2018,154:76-84. doi: 10.1016/j.compscitech.2017.11.010
    [29]
    GUAN L, PAN L, PENG T, et al. Green and scalable synthesis of porous carbon nanosheet-assembled hierarchical architectures for robust capacitive energy harvesting[J]. Carbon,2019,152:537-544. doi: 10.1016/j.carbon.2019.06.059
    [30]
    刘连梅, 赵健伟, 陈超. 聚苯胺-石墨烯/聚酰亚胺复合导电纱的制备及其超电容特性[J]. 复合材料学报, 2020, 37(4):786-793.

    LIU Lianmei, ZHAO Jianwei, CHEN Chao. Preparation and supercapacitance characteristics of polyaniline-graphene/polyimide composite conductive yarn[J]. Acta Materiae Compositae Sinica,2020,37(4):786-793(in Chinese).
    [31]
    MA J, TANG S, SYDE J A, et al. High-performance asymmetric supercapacitors based on reduced graphene oxide/polyaniline composite electrodes with sandwich-like structure[J]. Journal of Materials Science & Technology,2018,34(7):1103-1109.
    [32]
    林有铖, 钟新仙, 黄寒星, 等. 不同磺酸掺杂聚苯胺的制备及在超级电容器中的应用[J]. 物理化学学报, 2016, 32(2):474-480. doi: 10.3866/PKU.WHXB201511104

    LIN Youcheng, ZHONG Xinxian, HUANG Hanxing, et al. Preparation and application of polyaniline doped with different sulfonic acids for supercapacitor[J]. Acta Physico-Chimica Sinica,2016,32(2):474-480(in Chinese). doi: 10.3866/PKU.WHXB201511104
    [33]
    ZHAO Q, CHEN J, LUO F, et al. Vertically oriented polyaniline-graphene nanocomposite based on functionalized graphene for supercapacitor electrode[J]. Journal of Applied Polymer Science,2017,134(19):44808.
    [34]
    GUPTA R, VADODARIYA N, MAHTO A, et al. Functionalized seaweed-derived graphene/polyaniline nanocompo-site as efficient energy storage electrode[J]. Journal of Applied Electrochemistry,2018,48:37-48. doi: 10.1007/s10800-017-1120-z
    [35]
    曾向东, 赵晓昱, 韦会鸽, 等. 聚苯胺-还原氧化石墨烯复合材料的比电容及超级电容性能[J]. 物理化学学报, 2017, 33(10):2035-2041. doi: 10.3866/PKU.WHXB201705182

    ZENG Xiangdong, ZHAO Xiaoyu, WEI Huige, et al. Specific capacitance and supercapacitive properties of polyaniline-reduced graphene oxide composite[J]. Acta Physico-Chimica Sinica,2017,33(10):2035-2041(in Chinese). doi: 10.3866/PKU.WHXB201705182
    [36]
    LING Z, WANG G, DONG Q, et al. An ionic liquid template approach to graphene-carbon xerogel composites for supercapacitors with enhanced performance[J]. Journal of Materials Chemistry A,2014,2:14329. doi: 10.1039/C4TA02223H
    [37]
    WANG Y, ZHU S, TSUBAKI N, et al. Highly dispersed Mo2C anchored on N, P-codoped graphene as efficient electrocatalyst for hydrogen evolution reaction[J]. ChemCatChem,2018,10(10):2300-2304. doi: 10.1002/cctc.201800025
    [38]
    渠璐平, 任彤, 王宁, 等. 硬碳材料电极首周嵌钠过程的电化学阻抗谱研究[J]. 化学学报, 2019, 77(7):634-640. doi: 10.6023/A19030103

    QU Luping, REN Tong, WANG Ning, et al. Electrochemical impedance spectroscopy study on the first sodium insertion process of hard carbon material electrode[J]. Acta Chimica Sinica,2019,77(7):634-640(in Chinese). doi: 10.6023/A19030103
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (1819) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return