Volume 38 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
WANG Xinling, CHEN Yongjie, QIAN Wenwen, et al. Experiment on bending performance of engineered cementitious composites reinforced by high-strength stainless steel wire strand mesh[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1292-1301. doi: 10.13801/j.cnki.fhclxb.20200805.001
Citation: WANG Xinling, CHEN Yongjie, QIAN Wenwen, et al. Experiment on bending performance of engineered cementitious composites reinforced by high-strength stainless steel wire strand mesh[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1292-1301. doi: 10.13801/j.cnki.fhclxb.20200805.001

Experiment on bending performance of engineered cementitious composites reinforced by high-strength stainless steel wire strand mesh

doi: 10.13801/j.cnki.fhclxb.20200805.001
  • Received Date: 2020-05-21
  • Accepted Date: 2020-07-28
  • Available Online: 2020-08-05
  • Publish Date: 2021-04-08
  • In order to study the bending performance of engineered cementitious composites (ECC) reinforced by high-strength stainless steel wire strand meshes, the four-point bending tests were carried out on 8 high-strength stainless steel wire strands mesh reinforced ECC thin plate specimens designed in two groups, which considered two factors including the reinforcement ratio of longitudinal high-strength stainless steel wire strands and ECC compressive and tensile strength. The results show that with an increase in the reinforcement ratio of longitudinal high-strength stainless steel wire strands, the cracking load is basically unchanged, but the peak load increases significantly, and the peak displacement decreases, that is the ductility is reduced. In addition, the reasonable reinforcement ratio of longitudinal high-strength stainless steel wire strands should be less than 0.48%. The cracking load and peak load of the high-strength stainless steel wire strand mesh reinforced ECC bending specimen increases as the ECC strength increasing. After ECC cracking, the steel wire strands and the ECC in the tensile zone are tensioned together. When the applied load reaches 80% of the peak load, the maximum crack width at the bottom is only 0.08 mm. At peak load, the maximum crack width doesn’t exceed 0.55 mm, and the compressive strain of the ECC in the compression zone reaches 0.01. When the ECC is crushed, the maximum deflection in the mid-span reaches 1/15 of the span. These phenomena show that the high-strength stainless steel wire strand mesh reinforced ECC studied in the paper has good crack resistance and ductility.

     

  • loading
  • [1]
    LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics,1992,118(11):2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [2]
    LI V C, WU H C. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites[J]. Journal Applied Mechanics Reviews,1992,45(8):390-398. doi: 10.1115/1.3119767
    [3]
    YU Jiahuan, CHEN Wei, YU Mingxin, et al. The microstructure of self-healed PVA ECC under wet and dry cycles[J]. Materials Research,2010,13(2):225-231. doi: 10.1590/S1516-14392010000200017
    [4]
    刘曙光, 郑德路, 闫长旺, 等. 聚乙烯醇纤维水泥基复合材料拉压比试验研究[J]. 土木建筑与环境工程, 2013, 35(S1):134-138.

    LIU Shuguang, ZHENG Delu, YAN Changwang, et al. Experimental study of ratio between splitting tensile strength and compressive strength for PVA fiber cementitious composites[J]. Journal of Civil, Architectrual & Environment Engineering,2013,35(S1):134-138(in Chinese).
    [5]
    LI V C. Engineered cementitious composites-tailored composites through micromechanical modeling[J]. Journal of Advanced Concrete Technology,1998,1(3):64-97.
    [6]
    王新玲, 李苗浩夫, 李可. ECC圆柱体轴心受压性能试验研究[J]. 建筑科学, 2019, 35(5):59-63.

    WANG Xinling, LI Miaohaofu, LI Ke. Experimental research on the axial compression performance of ECC cylinders[J]. Building Science,2019,35(5):59-63(in Chinese).
    [7]
    蔡向荣. 超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析[D]. 大连: 大连理工大学, 2010.

    CAI Xiangrong. The basic mechanical performance and strain hardening process theoretical analysis of ultra high toughness cementitious composites[D]. Dalian: Dalian University of Technology, 2010(in Chinese).
    [8]
    刘伟康. ECC受压和受拉性能及本构模型研究[D]. 郑州: 郑州大学, 2018.

    LIU Weikang. Study on the compression and tensile properties and the constitutive model of ECC[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    [9]
    袁方, 陈梦成. 钢筋增强ECC梁受弯性能评估[J]. 铁道建筑, 2016(7):17-21+34. doi: 10.3969/j.issn.1003-1995.2016.07.05

    YUAN Fang, CHEN Mengcheng. Evaluation on flexural performance of steel reinforced ECC (engineered cementitious composite) girder[J]. Railway Engineering,2016(7):17-21+34(in Chinese). doi: 10.3969/j.issn.1003-1995.2016.07.05
    [10]
    葛文杰, 陈俊钰, 戴强, 等. 钢筋增强ECC-混凝土复合梁受弯性能试验研究[J]. 混凝土, 2017(11):35-39. doi: 10.3969/j.issn.1002-3550.2017.11.009

    GE Wenjie, CHEN Junyu, DAI Qiang, et al. Experimental study on the flexural behavior of ECC-concrete composite beams reinforced of steel bars[J]. Concrete,2017(11):35-39(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.11.009
    [11]
    徐世烺, 李庆华, 李贺东. 碳纤维编织网增强超高韧性水泥基复合材料弯曲性能的试验研究[J]. 土木工程学报, 2007, 40(12):69-76. doi: 10.3321/j.issn:1000-131x.2007.12.009

    XU Shilang, LI Qinghua, LI Hedong. An experimental study on the flexural properties of carbon textile reinforced ECC[J]. China Civil Engineering Journal,2007,40(12):69-76(in Chinese). doi: 10.3321/j.issn:1000-131x.2007.12.009
    [12]
    郝瀚, 水中和, 郑又瑞, 等. GFRP筋增强ECC梁的抗弯性能研究[J]. 建材世界, 2015, 36(2):35-38. doi: 10.3963/j.issn.1674-6066.2015.02.009

    HAO Han, SHUI Zhonghe, ZHENG Yourui, et al. Study on flexural behavior of GFRP bars reinforced ECC beam[J]. The World of Building Materials,2015,36(2):35-38(in Chinese). doi: 10.3963/j.issn.1674-6066.2015.02.009
    [13]
    聂建国, 王寒冰, 张天申, 等. 高强不锈钢绞线网-渗透性聚合砂浆抗弯加固的试验研究[J]. 建筑结构学报, 2005, 26(2):1-9. doi: 10.3321/j.issn:1000-6869.2005.02.001

    NIE Jianguo, WANG Hanbing, ZHANG Tianshen, et al. Experimental study on flexural behavior of RC beams strengthened with stainless steel wire mesh and permeability polymer mortar[J]. Journal of Building Structures,2005,26(2):1-9(in Chinese). doi: 10.3321/j.issn:1000-6869.2005.02.001
    [14]
    聂建国, 蔡奇, 张天申, 等. 高强不锈钢绞线网-渗透性聚合砂浆抗剪加固的试验研究[J]. 建筑结构学报, 2005, 26(2):10-17. doi: 10.3321/j.issn:1000-6869.2005.02.002

    NIE Jianguo, CAI Qi, ZHANG Tianshen, et al. Experimental study on shear behavior of RC beams strengthened with stainless steel wire mesh and permeability polymer mortar[J]. Journal of Building Structures,2005,26(2):10-17(in Chinese). doi: 10.3321/j.issn:1000-6869.2005.02.002
    [15]
    王亚勇, 姚秋来, 巩正光, 等. 高强钢绞线网-聚合物砂浆在郑成功纪念馆加固工程中的应用[J]. 建筑结构, 2005, 35(8):41-42.

    WANG Yayong, YAO Qiulai, GONG Zhengguang, et al. Application of strengthened technology by composite cover combined with high strength wire cable mesh and polymeric mortar in Zheng Chenggong Memorial strengthening engineering[J]. Building Structure,2005,35(8):41-42(in Chinese).
    [16]
    夏晓兵, 栾福杰, 李继斌, 等. 高强不锈钢绞线网-高强渗透性聚合物砂浆加固技术在改造施工中的应用[J]. 建筑结构, 2010, 40(S2):669-670.

    XIA Xiaobing, LUAN Fujie, LI Jibin, et al. The application of high-strength stainless steel wire mesh and permeability polymer mortar in engineering strengthening and retrofitting[J]. Building Structures,2010,40(S2):669-670(in Chinese).
    [17]
    朱俊涛, 李燚, 王新玲. 考虑横向钢绞线影响的钢绞线网/工程水泥基复合材料黏结性能试验研究[J]. 工业建筑, 2018, 48(11): 143-148.

    ZHU Juntao, LI Yi, WANG Xinling. Experimental research on bonding performance of stainless steel wire mesh/ECC with horizontal steel wire[J]. Industrial Construction. 2018, 48(11): 143-148(in Chinese).
    [18]
    王新玲, 杨广华, 钱文文, 等. 高强不锈钢绞线网增强工程水泥基复合材料受拉应力-应变关系[J]. 复合材料学报, 2020, 37(12):3220-3228.

    WANG Xinling, YANG Guanghua, QIAN Wenwen, et al. Tensile stress-strain relationship of engineered cementitious composites reinforced by high-strength stainless steel wire mesh[J]. Acta Materiae Compositae Sinica,2020,37(12):3220-3228(in Chinese).
    [19]
    朱俊涛, 张凯, 王新玲, 等. 高强不锈钢绞线网与ECC黏结-滑移关系模型[J]. 土木工程学报, 2020, 53(4): 83-92.

    ZHU Juntao, ZHANG Kai, WANG Xinling, et al. Bond-slip relational model between high-strength stainless steel wire mesh and ECC[J]. China Civil Engineering Journal, 2020, 53(4): 83-92(in Chinese).
    [20]
    中华人民共和国住房和城乡建筑部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2015(in Chinese).
    [21]
    MAALEJ M, LI V C. Flexural strength of fiber cementitious composites[J]. Journal of Materials in Civil Engineering, ASCE,1994,6(3):390-406. doi: 10.1061/(ASCE)0899-1561(1994)6:3(390)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (2943) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return