Volume 38 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
CAI Houxue, YUAN An, FENG Ruxi, et al. Investigations on synthesis and electrochemical performance of high performance LiNi0.8Co0.1Mn0.1O2 cathode material[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1882-1889. doi: 10.13801/j.cnki.fhclxb.20200922.005
Citation: CAI Houxue, YUAN An, FENG Ruxi, et al. Investigations on synthesis and electrochemical performance of high performance LiNi0.8Co0.1Mn0.1O2 cathode material[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1882-1889. doi: 10.13801/j.cnki.fhclxb.20200922.005

Investigations on synthesis and electrochemical performance of high performance LiNi0.8Co0.1Mn0.1O2 cathode material

doi: 10.13801/j.cnki.fhclxb.20200922.005
  • Received Date: 2020-07-13
  • Accepted Date: 2020-09-07
  • Available Online: 2020-09-22
  • Publish Date: 2021-06-23
  • A facie solid-state route has been employed to synthesize LiNi0.8Co0.1Mn0.1O2 material with superior electrochemical performance by varying the oxygen flow rate during the calcination process, and the effect of different oxygen flow rates on the structure and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 has also been investigated. It reveals that the LiNi0.8Co0.1Mn0.1O2 material synthesized under a flow rate of 0.1 L/min has the lowest degree of cation mixing among all samples and large d-space. The 0.1 L/min sample shows a discharge capacity of 174 mA·h·g−1 after 100 cycles at 1 C, corresponding to the capacity retention rate of 98.3%. A retention rate as high as 96.8% is achieved at 2 C, and good performance is also obtained in high cut-off votage test. Moreover, we confirm that low oxygen-flow rate can lead to high degree of cation mixing because of high content of Ni2+, and high oxygen-flow rate can decrease the d-spacing of LiNi0.8Co0.1Mn0.1O2 material, thereby being harmful for the Li+ intercalation/deintercalation.

     

  • loading
  • [1]
    KIM T, SONG W, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A,2019,7:2942-2964. doi: 10.1039/C8TA10513H
    [2]
    LUO X D, YIN Y Z, YUAN M, et al. High performance composites of spinel LiMn2O4/3DG for lithium ion batteries[J]. RSC Advances,2018,8(2):877-884. doi: 10.1039/C7RA12613A
    [3]
    LIU X P, CHEN Q Q, LI Y W, et al. Synergistic modification of magnesium fluoride/sodium for improving the electrochemical performances of high-nickel ternary (NCM811) cathode materials[J]. Journal of The Electrochemical Society,2019,166(14):A3480-A3486. doi: 10.1149/2.1301914jes
    [4]
    OHZUKU T, NAGAYAMA M, TSUJI K, et al. High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: Toward rechargeable capacity more than 300 mA∙h∙g-1[J]. Journal of Materials Chemistry A,2011,21:10179-10188. doi: 10.1039/c0jm04325g
    [5]
    ZHANG X, JIANG W J, MAUGER A, et al. Minimization of the cation mixing in Li1+x(NMC)1−xO2 as cathode material[J]. Journal of Power Sources,2010,195(5):1292-1301. doi: 10.1016/j.jpowsour.2009.09.029
    [6]
    FAN Q, YANG S, LIU J, et al. Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries[J]. Journal of Power Sources,2019,421:91-99. doi: 10.1016/j.jpowsour.2019.03.014
    [7]
    BIANCHI V, BACH S, BELHOMME C, et al. Electrochemical investigation of the Li insertion-extraction reaction as a function of lithium deficiency in Li1-xNi1+xO2[J]. Electrochimica Acta,2001,46(7):999-1011. doi: 10.1016/S0013-4686(00)00681-2
    [8]
    DOLOTKO O, SENYSHYN A, MÜHLBAUER M J, et al. Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction[J]. Journal of Power Sources,2014,255:197-203. doi: 10.1016/j.jpowsour.2014.01.010
    [9]
    VU D L, LEE J W. Na-doped layered LiNi0.8Co0.1Mn0.1O2 with improved rate capability and cycling stability[J]. Journal of Solid State Electrochemistry,2018,22:1165-1173. doi: 10.1007/s10008-017-3863-1
    [10]
    WU F, TIAN J, SU Y, et al. Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries[J]. Journal of Power Sources,2014,269:747-754. doi: 10.1016/j.jpowsour.2014.07.057
    [11]
    YANG G, QIN X Z, WANG B, et al. Well-ordered spherical LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Journal of Materials Research,2019,35(1):1-7.
    [12]
    LIANG R, YU F D, GOH K, et al. Influence of oxygen percentage in calcination atmosphere on structure and electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Ceramics International,2019,45:18965-18971. doi: 10.1016/j.ceramint.2019.06.134
    [13]
    XU S, DU C, XU X, et al. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries[J]. Electrochimica Acta,2017,248:534-540. doi: 10.1016/j.electacta.2017.07.169
    [14]
    LIANG L, SUN X, WU C, et al. Nasicon-type surface functional modification in core-shell LiNi0.5Mn0.3Co0.2O2@NaTi2(PO4)3 cathode enhances its high-voltage cycling stability and rate capacity toward Li-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(6):5498-5510. doi: 10.1021/acsami.7b15808
    [15]
    YUAN H, SONG W, WANG M, et al. Lithium-ion conductive coating layer on nickel rich layered oxide cathode material with improved electrochemical properties for Li-ion battery[J]. Journal of Alloys and Compounds,2019,784:1311-1322. doi: 10.1016/j.jallcom.2019.01.072
    [16]
    CHENG C X, TAN X L, LIU H W, et al. High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation[J]. Materials Research Bulletin,2011,46(11):2032-2035. doi: 10.1016/j.materresbull.2011.07.004
    [17]
    WU S H, YANG C W. Preparation of LiNi1-yCoyO2 based cathode materials for lithium batteries by a co-precipitation method[J]. Journal of Power Sources,2005,146:270-274. doi: 10.1016/j.jpowsour.2005.03.027
    [18]
    FLY A, CHEN R. Rate dependency of incremental capacity analysis (dQ/dV) as a diagnostic tool for lithium-ion batteries[J]. Journal of Energy Storage,2020,29:101329. doi: 10.1016/j.est.2020.101329
    [19]
    YOON C S, RYU H H, PARK G T, et al. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batterie[J]. Journal of Materials Chemistry A,2018,6(9):4126-4132. doi: 10.1039/C7TA11346C
    [20]
    PARK K J, JUNG H G, KUO L Y, et al. Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries[J]. Advanced Energy Materials,2018,8(25):1801202-1801211. doi: 10.1002/aenm.201801202
    [21]
    RYU H H, PARK K J, YOON D R, et al. Li[Ni0.9Co0.09W0.01]O2: A new type of layered oxide cathode with high cycling stability[J]. Advanced Energy Materials,2019,9(44):1902698. doi: 10.1002/aenm.201902698
    [22]
    YOON C S, JUN D W, MYUNG S T, et al. Structural stability of LiNiO2 Cycled above 4.2 V[J]. ACS Energy Letter,2017,2(5):1150-1155. doi: 10.1021/acsenergylett.7b00304
    [23]
    SUN H H, MANTHIRAM A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries[J]. Chemistry of Materials,2017,29(19):8486-8493. doi: 10.1021/acs.chemmater.7b03268
    [24]
    CHEN J, YANG H P, LI T H, et al. The effects of reversibility of H2-H3 phase transition on Ni-rich layered oxide cathode for high-energy lithium-ion batteries[J]. Frontiers in Chemistry,2019,7:500.
    [25]
    LIU J, REEJA-JAYAN B, MANTHIRAM A. Conductive surface modification with aluminum of high capacity layered Li-[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes[J]. The Journal of Physical Chemistry C,2010,114(20):9528-9533. doi: 10.1021/jp102050s
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1131) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return