Volume 37 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
LUO Jian, SHI Jianjun, JIA Bin, et al. Effect of low temperature exposure on tensile mechanical properties of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3091-3101. doi: 10.13801/j.cnki.fhclxb.20200629.001
Citation: LUO Jian, SHI Jianjun, JIA Bin, et al. Effect of low temperature exposure on tensile mechanical properties of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3091-3101. doi: 10.13801/j.cnki.fhclxb.20200629.001

Effect of low temperature exposure on tensile mechanical properties of carbon fiber/epoxy composites

doi: 10.13801/j.cnki.fhclxb.20200629.001
  • Received Date: 2020-03-09
  • Accepted Date: 2020-06-11
  • Available Online: 2020-06-29
  • Publish Date: 2020-12-15
  • According to the effects of low temperature exposure on the mechanical properties of carbon fiber/epoxy (CF/EP) composites, the tensile properties of TR50S/YPH-69 were selected after low temperature of 0℃, −20℃, −40℃, −60℃ for 100 h, 200 h, 300 h, 400 h and 500 h to investigate the effects of low temperature, then the damage mechanism of material was analyzed by SEM. Based on the test results, a prediction formula was proposed to predict the residual strength of CF/EP composites exposed at low temperature. The test results present that after experiencing long time cryopreservation, the tensile mechanical properties of CF/EP composites increase first and then decrease, with the increase of the low-temperature exposure time. When the exposure time at low temperature is less than 300 h, the tensile strength of CF/EP composites increases first and then decreases as the temperature decreases; after the exposure time exceeds 300 h, the tensile strength gradually decreases as the temperature decreases. And the tensile elastic modulus of CF/EP composites shows a gradual upward trend with the increase of low-temperature exposure time, the lower the temperature, the more obvious the upward trend. SEM analysis shows that after a short period of low temperature exposure, the fiber and epoxy resin bond stronger, which is conducive to load transfer and enhance the CF/EP composites’s tensile ability, the destruction morphology is represented by more resin wrapped on the fiber. After long-term exposure to low temperature, material may occur cracks due to different contraction coefficient. Under the applied load, the crack gets further spread, which is not conducive to the load transfer, and causes the tensile strength to decline. The failure morphology shows that the fibers agglomerate into bundles, and the fiber bundle spacing increases. Based on initial test, a formula of predicting the residual strength of CF/EP composites after low temperature exposure was proposed. The test results are in good agreement with the predicted results. The number of tests can be reduced, due to consider the equivalent effect of the same material under different low temperatures and exposure time.

     

  • loading
  • [1]
    SETHI S, RAY B C. Environmental effects on fibre reinforced polymeric composites: Evolving reasons and remarks on interfacial strength and stability[J]. Advances in Colloid and Interface Science,2015:43-67.
    [2]
    FENG Q P, DENG Y H, XIAO H M, et al. Enhanced cryogenic interfacial normal bond property between carbon fibers and epoxy matrix by carbon nanotubes[J]. Composites Science and Technology,2014:59-65.
    [3]
    KARA M, KIRICI M, TATAR A C. Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nanotubes at cryogenic environment[J]. Compo-sites Part B: Engineering,2018:145-154.
    [4]
    LIU Y, WANG M, TIAN W, et al. Ohmic heating curing of carbon fiber/carbon nanofiber synergistically strengthening cement-based composites as repair/reinforcement materials used in ultra-low temperature environment[J]. Composites Part A: Applied Science and Manufacturing,2019,125:105570.
    [5]
    CAVCAR M. The international standard atmosphere[J]. Elsevier, 2017: 641-645.
    [6]
    HU T, LI Y, LV H X, et al. Study on airworthiness problems of operating in supercooled large drops icing conditions for transport category airplanes[J]. 3rd International Symposium on Aircraft Airworthiness(ISAA 2013),2014:467-478.
    [7]
    HE Y X, LI Q, KUILA T, et al. Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications[J]. Composites Part B: Engineering,2013,44(1):533-539. doi: 10.1016/j.compositesb.2012.03.014
    [8]
    刘康, 汪荣顺, 石玉美, 等. 纤维增强聚合物基复合材料的低温性能[J]. 低温工程, 2006(5):35-44. doi: 10.3969/j.issn.1000-6516.2006.05.007

    LIU Kang, WANG Rongshun, SHI Yumei, et al. Cryongenic performances of fibre reinforced polymer matrix compo-sites[J]. Cryogenics,2006(5):35-44(in Chinese). doi: 10.3969/j.issn.1000-6516.2006.05.007
    [9]
    刘新, 武湛君, 何辉永, 等. 超低温介质对碳纤维增强树脂基复合材料力学性能的影响[J]. 复合材料学报, 2017, 34(9):1944-1952.

    LIU Xin, WU Zhanjun, HE Huiyong, et al. Influence of cryogenic mediums on mechanical properties carbon fiber reinforced epoxy resin[J]. Acta Materiae Compositae Sinica,2017,34(9):1944-1952(in Chinese).
    [10]
    VICENTE S G, FRANCISCO G, DAVID C, et al. High-speed Impact performance of carbon/epoxy composites at very low temperatures[J]. 2nd International Symposium on Dynamic Response and Failure of Composite Materials, (DRAF 2016),2016:116-119.
    [11]
    SUK W H, SANG S A, LI H C, et al. Charpy impact fracture characteristics of CF/EP composite materials according to variations of fiber array direction and temperature[J]. International Journal of Precision Engineering and Manufac-turing,2013,14(2):253-258. doi: 10.1007/s12541-013-0035-9
    [12]
    ZAOUTSOS S P, ZILIDOU M C. Influence of extreme low temperature conditions on the dynamic mechanical properties of carbon fiber reinforced polymers[J]. IOP Conference Series-Materials Science and Engineering,2017.
    [13]
    WILSON P R, CINAR A F, MOSTAFAVI M, et al. Temperature driven failure of carbon epoxy composites–A quantitative full-field study[J]. Composites Science and Technology,2018:33-40.
    [14]
    马如飞, 周文胜, 李嘉, 等. 高空低温环境对无人机复合材料及夹芯结构性能的影响[J]. 材料导报, 2017, 31(A1):510-513.

    MA Rufei, ZHOU Wensheng, LI Jia, et al. Performance research of UAV composite and sandwich structure at high-altitude cryogenic condition[J]. Materials Reports,2017,31(A1):510-513(in Chinese).
    [15]
    肖琳. 高低温循环作用后CF/EP层合板力学性能演变研究[D]. 哈尔滨: 哈尔滨工业学, 2014.

    XIAO Lin. Study on mechanical properties evolution of CF/EP laminates after high and low temperature cycle[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [16]
    陈建琼, 杨万均, 彭京川, 等. 碳纤维增强尼龙复合材料低温环境适应性试验设计与分析[J]. 装备环境工程, 2017, 14(12):35-39.

    CHEN Jianqiong, YANG Wanjun, PENG Jingchuan, et al. Design and analysis of environmental worthiness experiments for carbon fiber reinforced nylon composites at low temperature[J]. Equipment Environmental Engineering,2017,14(12):35-39(in Chinese).
    [17]
    殷宗莲, 杨万均, 肖敏, 等. 高低温条件下碳纤维增强尼龙复合材料的老化特征分析[J]. 装备环境工程, 2015(3):106-110.

    YIN Zonglian, YANG Wanjun, XIAO Min, et al. Aging characteristics analyses of carbon fiber reinforced nylon composites in high and low temperature conditions[J]. Equipment Environmental Engineering,2015(3):106-110(in Chinese).
    [18]
    KARBHARI V M, POPE G. Effect of cold region type environment on impact and flexure properties of glass/vinylester composites[J]. Journal of Cold Regions Engineering,1993,8(1):1-20.
    [19]
    KARBHARI V M, ECKEL D A. Effect of cold regionsclimate on composite jacketed concrete columns[J]. Journal of Cold Regions Engineering,1994,8(3):73-86. doi: 10.1061/(ASCE)0887-381X(1994)8:3(73)
    [20]
    DUTTA P K, DAVID H. Low-temperature and freeze-thaw durability of thick composites[J]. Composites Part B: Engineering,1996,27(3-4):371-379. doi: 10.1016/1359-8368(96)00007-8
    [21]
    DUTTA P K. Low-temperature compressive strength of glass-fiber-reinforced polymer composites[J]. Journal of Offshore Mechanics and Arctic Engineering,1994,116(3):167-172. doi: 10.1115/1.2920146
    [22]
    王晓宁. 紫外、高低温老化对玻纤增强复合材料性能的影响[D]. 乌鲁木齐: 新疆大学, 2017.

    WANG Xiaoning. Influence of Uv aging, high and low temperature aging on glass fiber composite materials[D]. Urumqi: Xinjiang University, 2017(in Chinese).
    [23]
    全国纤维增强塑料标准化技术委员会. 定向纤维增强塑料拉伸性能试验方法: GB/T3354—2014[S]. 北京: 中国标准出版社. 2014.

    National Technical Committee on Fiber Reinforced Plastic of Standardization Administration of China. Test method for tensile properties of oriented fiber reinforced plastics: GB/T3354—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [24]
    王贤锋. 复合材料低温力学行为的研究[D]. 合肥: 中国科学技术大学, 2001.

    WANG Xianfeng. Research on the low temperature mechanical behavior of composite materials[D]. Hefei: University of Science and Technology of China, 2001(in Chinese).
    [25]
    李志伟. 环氧树脂及其复合材料的低温力学性能研究[D]. 大连: 大连理工大学, 2018.

    LI Zhiwei. The study on cryogenic mechanical properties of epoxy resin and its composites[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [26]
    BULMANIS V N, URZHUMTSEV Y S, CHERSKY I N. Methods of prediction of polymer composite material performance under cold climate conditions[J]. Mechanical Behaviour of Materials V,1988:1225-1230.
    [27]
    BULMANIS V N, YARTSEV V A, KRIVONOS V V. Durability of structures of polymer composites affected by static loads and climatic factors[J]. Mechanics of Composite Materials,1987,23(5):658-663.
    [28]
    MILYUTIN G I, BULMANIS V N, GRAKOVA T S, et al. Study and prediction of the strength characteristics of a wound epoxy organic-fiber plastic under different environmental effects[J]. Mechanics of Composite Materials,1989,25(2):183-189. doi: 10.1007/BF00616262
    [29]
    张颖军, 朱锡, 梅志远, 等. 聚合物基复合材料老化剩余强度等效预测方法研究[J]. 材料导报, 2012(8):154-156, 164. doi: 10.3969/j.issn.1005-023X.2012.08.041

    ZHANG Yinjun, ZHU Xi, MEI Zhiyuan, et al. Equivalent estimating methods of ageing on polymer matrix composites residual strength[J]. Materials Reports,2012(8):154-156, 164(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.08.041
    [30]
    杨旭东, 安涛, 邹田春, 等. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7):84-91. doi: 10.11868/j.issn.1001-4381.2018.000307

    YANG Xudong, AN Tao, ZOU Tianchun, et al. Effect of hygrothermal environment on mechanical properties and damage mechanism of CF/EP[J]. Journal of Materials Engineering,2019,47(7):84-91(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000307
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (1326) PDF downloads(129) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return