Volume 38 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
LI Kecheng, YANG Lei, GAO Dongyue, et al. Design and analysis of aluminum alloy-rigid polyurethane foam-cored common bulkhead for cryogenic tanks[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 911-919. doi: 10.13801/j.cnki.fhclxb.20200714.002
Citation: LI Kecheng, YANG Lei, GAO Dongyue, et al. Design and analysis of aluminum alloy-rigid polyurethane foam-cored common bulkhead for cryogenic tanks[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 911-919. doi: 10.13801/j.cnki.fhclxb.20200714.002

Design and analysis of aluminum alloy-rigid polyurethane foam-cored common bulkhead for cryogenic tanks

doi: 10.13801/j.cnki.fhclxb.20200714.002
  • Received Date: 2020-05-06
  • Accepted Date: 2020-07-12
  • Available Online: 2020-07-14
  • Publish Date: 2021-03-15
  • By using a sandwich construction that consists of aluminum alloy panels-rigid polyurethane foam, a common bulkhead was devised for cryogenic launch vehicle tanks. The common bulkhead has the characteristics of lightweight, easy to manufacture, and integrated load bearing/thermal insulation. Based on numerical simulations, thermal insulation effect, structural stability and thermal-mechanical coupling behavior of the common bulkhead were analyzed. The results show that the common bulkhead not only satisfies the thermal insulation requirements of cryogenic tanks for liquid hydrogen and oxygen, but also keeps structural stability under a differential pressure of 0.342 MPa and material safety with a pressure of 0.5 MPa. The design and analysis of this structure can provide technical support for the design of new cryogenic tanks with a common bulkhead.

     

  • loading
  • [1]
    谢福寿, 厉彦忠, 王磊, 等. 低温推进剂过冷技术研究[J]. 航空动力学报, 2017, 32(3):762-768.

    XIE Fushou, LI Yanzhong, WANG Lei, et al. Study on subcooled technology for cryogenic propellants[J]. Journal of Aerospace Power,2017,32(3):762-768(in Chinese).
    [2]
    侍野, 唐一华, 刘畅, 等. 低温推进剂集成管理技术的发展与启示[J]. 宇航总体技术, 2019, 3(2):54-61.

    SHI Ye, TANG Yihua, LIU Chang, et al. Development and revelation of integrated vehicle fluids[J]. Astronautical Systems Engineering Technology,2019,3(2):54-61(in Chinese).
    [3]
    FREY B, WESSELS W, EBELING W D, et al. Thermal control of the cryogenic upper stage of ARIANE 5 midlife evolution[C]//42nd International Conference on Environmental Systems. California: American Institute for Aeronautics and Astronautics, 2012, 3475: 1-14.
    [4]
    KUTTER B, ZEGLER F, LUCAS S, et al. Atlas centaur extensibility to long-duration in-space applications[C]//Space 2005. California: American Institute for Aeronautics and Astronautics, 2005, 6738: 1-12.
    [5]
    唐玉花, 狄文斌, 刘靖华. 液体运载火箭一维纵横扭一体化建模技术[J]. 宇航学报, 2017, 38(1):89-96. doi: 10.3873/j.issn.1000-1328.2017.01.012

    TANG Yuhua, DI Wenbin, LIU Jinghua. A one-dimension longitudinal-lateral-torsional integrated modeling technique for liquid-propellant launch vehicle[J]. Journal of Astronautics,2017,38(1):89-96(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.01.012
    [6]
    VIETZE M, MUNDT C, WEILAND S. Investigation of thermal characteristics of sandwich common bulkhead equipped launcher tank[J]. Journal of Spacecraft and Rockets,2017,54(1):67-74. doi: 10.2514/1.A33595
    [7]
    LIU Z, LI Y Z, ZHOU G Q. Study on thermal stratification in liquid hydrogen tank under different gravity levels[J]. International Journal of Hydrogen Energy,2018,43(19):9369-9378. doi: 10.1016/j.ijhydene.2018.04.001
    [8]
    FISCHER, WOLFGANG P P. Development of cryogenic insulations for launcher upper stages[C]//44th International Conference on Environmental Systems. Arizona: 2014, 142: 1-14.
    [9]
    刘展, 厉彦忠, 王磊, 等. 在轨运行低温液氢箱体蒸发量计算与增压过程研究[J]. 西安交通大学学报, 2015, 49(2):135-140.

    LIU Zhan, LI Yanzhong, WANG Lei, et al. Evaporation calculation and pressurization process of on-orbit cryogenic liquid hydrogen storage tank[J]. Journal of Xi’an Jiaotong University,2015,49(2):135-140(in Chinese).
    [10]
    李平岐, 何巍, 杨云飞. 液体运载火箭长细比设计研究[J]. 宇航总体技术, 2019, 3(3):16-22.

    LI Pingqi, HE Wei, YANG Yunfei. The research of liquid launch vehicle slenderness ratio design[J]. Astronautical Systems Engineering Technology,2019,3(3):16-22(in Chinese).
    [11]
    AEROSPACE M M. Titan 3E/Centaur D-1T systems summary, NASA-CR-141014[R]. Washington: NASA, 1973.
    [12]
    HEALD D A. Reusable centaur study, NASA-CR-120373[R]. Washington: NASA, 1974.
    [13]
    WHITEHEAD J. Mass breakdown of the Saturn V[C]//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Alabama: American Institute for Aeronautics and Astronautics, 2000, 3141: 1-11.
    [14]
    RAVET L. The ARIANE 5 launcher improvements[J]. Air & Space Europe,2000,2(2):68-72.
    [15]
    BIGGS R, An integrated airframe experiment for future responsive access to space applications[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. California: American Institute for Aeronautics and Astronautics, 2009, 2630: 1-12.
    [16]
    BIGGS R, MCCANDLESS M , COCHRAN R. Structural efficiency of integrated composite structures for future space launch vehicle airframe applications[C]//AIAA SPACE 2011 Conference & Exposition. California: American Institute for Aeronautics and Astronautics, 2011, 7278: 1-17.
    [17]
    SZELINSKI B, LANGE H, SACHER H, et al. Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank[J]. Acta Astronautica,2012,81(1):200-213. doi: 10.1016/j.actaastro.2012.06.025
    [18]
    李茂, 韩涵, 唐杰, 等. 大温差隔热共底在运载贮箱中的应用研究[J]. 上海航天, 2016, 33(s1):43-49.

    LI Mao, HAN Han, TANG Jie, et al. Application of PMI foam cored sandwich bulkhead tank in launch vehicle[J]. Aerospace Shanghai,2016,33(s1):43-49(in Chinese).
    [19]
    李照谦, 南博华, 何腾锋, 等. 新一代运载火箭贮箱大温差泡沫夹层共底研制[J]. 宇航材料工艺, 2016, 46(4):68-72. doi: 10.3969/j.issn.1007-2330.2016.04.017

    LI Zhaoqian, NAN Bohua, HE Tengfeng, et al. Development of large temperature difference foam sandwich co-bulkhead of cryogenic tank for new-generation launch vehicle[J]. Aerospace Materials & Technology,2016,46(4):68-72(in Chinese). doi: 10.3969/j.issn.1007-2330.2016.04.017
    [20]
    孙培杰, 李鹏, 张振涛, 等. 新一代运载火箭共底贮箱隔热性能试验及环境预示[J]. 上海航天, 2014, 31(5):54-59. doi: 10.3969/j.issn.1006-1630.2014.05.011

    SUN Peijie, LI Peng, ZHANG Zhentao, et al. Experimental and numerical investigation of heat insulation performances of coplanar tanks in new generation launch vehicle[J]. Aerospace Shanghai,2014,31(5):54-59(in Chinese). doi: 10.3969/j.issn.1006-1630.2014.05.011
    [21]
    LI Z Q, NAN B H, HE T F, et al. Study of bonding technology and property of foam-sandwich co-bulkhead of cryogenic tank on launch vehicle[J]. Materials Science Forum, 2015, 817: 639-644.
    [22]
    闫指江, 吴胜宝, 赵一博, 等. 应用于低温推进剂在轨贮存的组合绝热材料综述[J]. 载人航天, 2016, 22(3):28-32.

    YAN Zhijiang, WU Shengbao, ZHAO Yibo, et al. Review of assembled thermal insulating materials applied for on-orbit cryogenic propellant storage[J]. Manned Spaceflight,2016,22(3):28-32(in Chinese).
    [23]
    商晋, 吕翠, 伍继浩. 聚氨酯硬质泡沫的低温应用研究现状[J]. 低温与超导, 2017, 45(10):14-19.

    SHANG Jin, LV Cui, WU Jihao. Cryogenic application of rigid polyurethane foam[J]. Cryogenics & Superconductivity,2017,45(10):14-19(in Chinese).
    [24]
    KAUSAR A. Polyurethane composite foams in high performance applications: a review[J]. Polymer Plastics Technology & Engineering,2018,57(4):346-369.
    [25]
    孙小伟, 孙军坤, 俞炜, 等. LNG船货物围护系统用硬质聚氨酯绝热材料制备和性能研究[J]. 聚氨酯工业, 2018, 33(3):5-9. doi: 10.3969/j.issn.1005-1902.2018.03.002

    SUN Xiaowei, SUN Junkun, YU Wei, et al. Preparation and performance of the rigid polyurethane foams for cargo containment system of LNGC[J]. Polyurethane Industry,2018,33(3):5-9(in Chinese). doi: 10.3969/j.issn.1005-1902.2018.03.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (1152) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return