Volume 38 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
ZHAO Qiuhong, DONG Shuo, ZHU Han. Experiment on stress-strain behavior and constitutive model of steel fiber-rubber/ concrete subjected to uniaxial compression[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2359-2369. doi: 10.13801/j.cnki.fhclxb.20200916.001
Citation: ZHAO Qiuhong, DONG Shuo, ZHU Han. Experiment on stress-strain behavior and constitutive model of steel fiber-rubber/ concrete subjected to uniaxial compression[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2359-2369. doi: 10.13801/j.cnki.fhclxb.20200916.001

Experiment on stress-strain behavior and constitutive model of steel fiber-rubber/ concrete subjected to uniaxial compression

doi: 10.13801/j.cnki.fhclxb.20200916.001
  • Received Date: 2020-08-03
  • Accepted Date: 2020-09-01
  • Available Online: 2020-09-16
  • Publish Date: 2021-07-15
  • Adding steel fiber (SF) into rubber concrete can improve the strength reduction caused by the incorporation of rubber particles, and further increase the ductility. Ten groups of SF-rubber/concrete under uniaxial compression were conducted in order to study the compressive properties. The crumb rubber particles were incorporated at different percentages of 0%, 10% and 20% by volume substation of sand, and SF with volume fraction of 0vol%, 0.5vol%, 1.0vol%, and 1.5vol% were added to the concrete mixture. The results show that the bridging action of SF and its positive synergy with rubber particles in SF-rubber/concrete can improve the compressive behavior of concrete. The failure process of SF-rubber/concrete specimens is mild and slow, and the failure mode is obviously ductile. After adding SF, the compressive strength and elastic modulus of the SF-rubber/concrete increase obviously, and the strains at the peak stress and the post-peak ductility increase. With the increase of rubber particles, the strain at the peak stress and the post-peak ductility of SF-rubber/concrete further increase. But the compressive strength and elastic modulus of SF-rubber/concrete are reduced by adding rubber particles. Based on the test data and the literature of stress-strain curve expression, a more suitable analytical model was proposed to generate the stress-strain curve of SF-rubber/concrete, which can be applied in the analysis and design of SF-rubber/concrete structural members.

     

  • loading
  • [1]
    TOUTANIJI H A. The use of rubber tire particles in concrete to replace mineral aggregates[J]. Cement & Concrete Composites,1996,18(2):135-139.
    [2]
    刘日鑫, 侯文顺, 徐永红, 等. 废橡胶颗粒对混凝土力学性能的影响[J]. 建筑材料学报, 2009, 12(3):341-344. doi: 10.3969/j.issn.1007-9629.2009.03.020

    LIU Rixin, HOU Wenshun, XU Yonghong, et al. Effect of crumb rubber on the mechanical properties of concrete[J]. Journal of Building Materials,2009,12(3):341-344(in Chinese). doi: 10.3969/j.issn.1007-9629.2009.03.020
    [3]
    HAN Q H, YANG G, XU J, et al. Acoustic emission data analyses based on crumb rubber concrete beam bending tests[J]. Engineering Fracture Mechanics,2019,210:189-202. doi: 10.1016/j.engfracmech.2018.05.016
    [4]
    TURATSINZE A, GRANJU J L, BONNET S. Positive synergy between steel-fibres and rubber aggregates: Effect on the resistance of cement-based mortars to shrinkage cracking[J]. Cement & Concrete Research,2006,36(9):1692-1697.
    [5]
    NOAMAN A T, BAKAR B H A, AKIL H M. Experimental investigation on compression toughness of rubberized steel fibre concrete[J]. Construction and Building Materials,2016,115:163-170. doi: 10.1016/j.conbuildmat.2016.04.022
    [6]
    LI Y, LI Y Q. Experimental study on performance of rubber particle and steel fiber composite toughening concrete[J]. Construction and Building Materials,2017,146:267-275. doi: 10.1016/j.conbuildmat.2017.04.100
    [7]
    FU C Q, YE H L, WANG K J, et al. Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC)[J]. Composites Part B: Engineering,2019,160:158-166. doi: 10.1016/j.compositesb.2018.10.045
    [8]
    CARREIRA D J, CHU K. Stress-strain relationship for plain concrete in compression[J]. Journal of the American Concrete Institute,1985,82(6):797-804.
    [9]
    过镇海. 混凝土的强度和本构关系: 原理与应用[M]. 北京: 中国建筑工业出版社, 2004.

    GUO Zhenhai. Strength and constitutive model of concrete: Principle and application[M]. Beijing: China Architecture & Building Press, 2004(in Chinese).
    [10]
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB50010—2010[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures: GB50010—2010[S]. Beijing: China Architecture & Building Press, 2011(in Chinese).
    [11]
    朱涵, 刘春生, 张永明, 等. 橡胶集料掺量对混凝土压弯性能的影响[J]. 天津大学学报, 2007, 40(7):761-765.

    ZHU Han, LIU Chunsheng, ZHANG Yongming, et al. Effect of crumb rubber proportion on compressive and flexural behavior of concrete[J]. Journal of Tianjin University,2007,40(7):761-765(in Chinese).
    [12]
    王婧一, 王立燕, 张亚梅. 弹性橡胶混凝土压、弯变形性能试验研究[J]. 混凝土与水泥制品, 2008(2):6-10.

    WANG Jingyi, WANG Liyan, ZHANG Yamei. Experimental study on deformation characteristic of elastic rubberized concrete under compressive and flexural loading[J]. China Concrete and Cement Products,2008(2):6-10(in Chinese).
    [13]
    刘锋, 潘东平, 李丽娟, 等. 低强橡胶混凝土单轴受压本构关系的试验研究[J]. 建筑材料学报, 2007, 10(4):407-411. doi: 10.3969/j.issn.1007-9629.2007.04.006

    LIU Feng, PAN Dongping, LI Lijuan, et al. Experimental study on constitutive equation of crumb rubber concrete subject to uniaxial compression[J]. Journal of Building Materials,2007,10(4):407-411(in Chinese). doi: 10.3969/j.issn.1007-9629.2007.04.006
    [14]
    杨敏. 废旧橡胶混凝土基本力学性能研究[D]. 沈阳: 沈阳大学, 2012.

    YANG Min. Research on basis mechanical performance of waste rubber concrete[D]. Shenyang: Shenyang University, 2012(in Chinese).
    [15]
    赵秋红, 王菲, 朱涵. 结构用橡胶集料混凝土受压全曲线试验及其本构模型[J]. 复合材料学报, 2018, 35(8):2222-2234.

    ZHAO Qiuhong, WANG Fei, ZHU Han. Compression test on curves and constitutive model of crumb rubber concrete for structural purposes[J]. Acta Materiae Compositae Sinica,2018,35(8):2222-2234(in Chinese).
    [16]
    冯文贤, 魏宜达, 李丽娟, 等. 高强橡胶混凝土单轴受压本构关系的试验研究[J]. 新型建筑材料, 2010, 37(2):12-15. doi: 10.3969/j.issn.1001-702X.2010.02.004

    FENG Wenxian, WEI Yida, LI Lijuan, et al. Experimental study on constitutive equation of high strength crumb rubber concrete to uniaxial compression[J]. New Building Materials,2010,37(2):12-15(in Chinese). doi: 10.3969/j.issn.1001-702X.2010.02.004
    [17]
    LI L J, RUAN S H, ZENG L. Mechanical properties and constitutive equations of concrete containing a low volume of tire rubber particles[J]. Construction and Building Materials,2014,70:291-308. doi: 10.1016/j.conbuildmat.2014.07.105
    [18]
    LI D D, ZHUGE Y, GRAVINA R, et al. Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab[J]. Construction and Building Materials,2018,166:745-759. doi: 10.1016/j.conbuildmat.2018.01.142
    [19]
    NATARAJA M C, DHANG N, GUPTA A P. Stress-strain curves for steel-fiber reinforced concrete under compression[J]. Cement & Concrete Composites,1999,21(5-6):383-390.
    [20]
    EZELDIN A S, BALAGURU P N. Normal-and high-strength fiber reinforced concrete under compression[J]. Journal of Materials in Civil Engineering,1992,4(4):415-429. doi: 10.1061/(ASCE)0899-1561(1992)4:4(415)
    [21]
    BARROS J A O, FIGUEIRAS J A. Flexural behavior of SFRC: Testing and modeling[J]. Journal of Materials in Civil Engineering,1999,11(4):331-339. doi: 10.1061/(ASCE)0899-1561(1999)11:4(331)
    [22]
    MANSUR M A, CHIN M S, WEE T H. Stress-strain relationship of high-strength fiber concrete in compression[J]. Journal of Materials in Civil Engineering,1999,11(1):21-29. doi: 10.1061/(ASCE)0899-1561(1999)11:1(21)
    [23]
    高丹盈. 钢纤维混凝土轴压应力-应变全曲线的研究[J]. 水利学报, 1991 (10): 43-48.

    GAO Danying. Study on stress-strain curves of steel fiber reinforced concrete under uniaxial compression[J]. Journal of Hydraulic Engineering, 1991(10): 43-48(in Chinese).
    [24]
    张晓燕, 曹晨杰, 孙丽, 等. 钢纤维混凝土轴压应力-应变曲线试验研究[J]. 混凝土, 2013(5):24-27. doi: 10.3969/j.issn.1002-3550.2013.05.007

    ZHANG Xiaoyan, CAO Chenjie, SUN Li, et al. Experimental study on axial compressive stress-strain curve of SFRC[J]. Concrete,2013(5):24-27(in Chinese). doi: 10.3969/j.issn.1002-3550.2013.05.007
    [25]
    吕西林, 张颖, 年学成. 钢纤维高强混凝土在单调和重复荷载作用下轴压应力-应变曲线试验研究[J]. 建筑结构学报, 2017, 38(1):135-143.

    LV Xilin, ZHANG Ying, NIAN Xuecheng. Experimental study on stress-strain curves for high-strength steel fiber reinforced concrete under monotonic and repeated compressive loadings[J]. Journal of Building Structures,2017,38(1):135-143(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1523) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return