Volume 37 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
ZHONG Shaolong, ZHENG Mingsheng, XING Zhaoliang, et al. Effect of shape of inorganic particles on dielectric properties of polymer composites with high energy density[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2760-2768. doi: 10.13801/j.cnki.fhclxb.20200728.001
Citation: ZHONG Shaolong, ZHENG Mingsheng, XING Zhaoliang, et al. Effect of shape of inorganic particles on dielectric properties of polymer composites with high energy density[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2760-2768. doi: 10.13801/j.cnki.fhclxb.20200728.001

Effect of shape of inorganic particles on dielectric properties of polymer composites with high energy density

doi: 10.13801/j.cnki.fhclxb.20200728.001
  • Received Date: 2020-05-18
  • Accepted Date: 2020-07-13
  • Available Online: 2020-07-28
  • Publish Date: 2020-11-15
  • The formation of two-phase composite materials by adding inorganic ceramic particles in the organic matrix is a hot and difficult point in the current study of high energy storage density. The electrostatic energy storage characteristics of the material are determined by its internal electric field distribution. For pure polymer materials, the internal electric field is uniformly distributed in a uniform external electric field environment, but when the inorganic particles are filled to form a composite material, the local electric field of the material will be distorted, which will affect the dielectric properties of the composite material. In this paper, the electric response properties of particles with different shape, including sphere, fiber and disk and its special arrangement has been systematically studied. The results show that both the shape and the spatial arrangement of the particles in the polymer matrix affect the local distribution of electric field. For spherical particles, there will exist be field concentration up and below the particle. For fibers, the field caused by the terminal surface bound charge should not be neglected when the aspect ratio is not large enough. At last, three three-dimensional simulation models of composites with spherical, fiber and disk particles have been established. It is indicated that composites with fiber particle possess the highest effective permittivity, while the disk particle is the lowest under the same concentration. The investigation of this paper is of great significance to understand the microscopic mechanism of energy storage.

     

  • loading
  • [1]
    DANG Zhimin, YUAN Jinkai, ZHA Junwei, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites[J]. Progress in Materials Science,2012,57(4):660-723. doi: 10.1016/j.pmatsci.2011.08.001
    [2]
    HUAN Tran Doan, BOGGS Steve, TEYSSEDRE Gilbert, et al. Advanced polymeric dielectrics for high energy density applications[J]. Progress in Materials Science,2016,83:236-269. doi: 10.1016/j.pmatsci.2016.05.001
    [3]
    罗莎, 沈佳斌, 郭少云. 高储能密度聚合物基介电复合材料的研究进展[J]. 高分子通报, 2019(8):14-21.

    LUO Sha, SHEN Jiabin, GUO Shaoyun. Polymer-based dielectric composites with high energy storage[J]. Polymer Bulletin,2019(8):14-21(in Chinese).
    [4]
    雷清泉, 范勇, 王暄. 纳米高聚物复合材料的结构特性、应用和发展趋势及其思考[J]. 电工技术学报, 2006, 21(2):1-7, 12. doi: 10.3321/j.issn:1000-6753.2006.02.001

    LEI Qingquan, FAN Yong, WANG Xuan. Structure property applications and developing trends of polymer nanocomposites[J]. Transactions of China Electrotechnical Society,2006,21(2):1-7, 12(in Chinese). doi: 10.3321/j.issn:1000-6753.2006.02.001
    [5]
    HANEMANN Thomas, SZABO Dorothee Vinga. Polymer-nanoparticle composites: From synthesis to modern applications[J]. Materials,2010,3(6):3468-3517. doi: 10.3390/ma3063468
    [6]
    BI Meihua, HAO Yanan , ZHANG Jiameng, et al. Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites[J]. Nanoscale,2017,9(42):16386-16395. doi: 10.1039/C7NR05212J
    [7]
    PAN Z B, YAO L M, ZHAI J W, et al. Fast discharge and high energy density of nanocomposite capacitors using Ba0.6Sr0.4TiO3 nanofibers[J]. Ceramics International,2016,42(13):14667-14674. doi: 10.1016/j.ceramint.2016.06.090
    [8]
    王岚, 党智敏. 碳纳米管填充的高介电常数聚合物基复合电介质材料[J]. 电工技术学报, 2006, 21(4):24-28. doi: 10.3321/j.issn:1000-6753.2006.04.006

    WANG Lan, DANG Zhimin. Carbon nanotube filled polymer-based dielectric composites with high dielectric constant[J]. Transactions of China Electrotechnical Society,2006,21(4):24-28(in Chinese). doi: 10.3321/j.issn:1000-6753.2006.04.006
    [9]
    CHEN Jianwen, WANG Xiucai, YU Xinmei, et al. Significantly improved dielectric performance of nanocomposites via loading two dimensional core-shell structure Bi2Te3@SiO2 nanosheets[J]. Applied Surface Science,2018,447:704-710. doi: 10.1016/j.apsusc.2018.04.009
    [10]
    杜嘉雯. 二维无机填料/聚合物基柔性介电复合材料的制备与性能[D]. 北京: 清华大学, 2016.

    DU Jiawen. Preparation and properties of two-dimensional inorganic filler/polymer-based flexible dielectric composites[D]. Beijing: Tsinghua University, 2016(in Chinese).
    [11]
    XIE Bing, ZHANG Haibo, ZHANG Qi, et al. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires[J]. Journal of Materials Chemistry A,2017,5(13):6070-6078. doi: 10.1039/C7TA00513J
    [12]
    BATRA Saurabh, CAKMAK Miko. Ultra-capacitor flexible films with tailored dielectric constants using electric field assisted assembly of nanoparticles[J]. Nanoscale,2015,7(48):20571-20583. doi: 10.1039/C5NR06253E
    [13]
    王旗, 李喆, 尹毅. 微、纳米无机颗粒/环氧树脂复合材料击穿强度性能[J]. 电工技术学报, 2014, 29(12):230-235. doi: 10.3969/j.issn.1000-6753.2014.12.030

    WANG Qi, LI Zhe, YIN Yi. The effect of micro and nano inorganic filler on the breakdown strength of epoxy resin[J]. Transactions of China Electrotechnical Society,2014,29(12):230-235(in Chinese). doi: 10.3969/j.issn.1000-6753.2014.12.030
    [14]
    TANG Haixiong, LIN Yirong, SODANO Henry A. Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors[J]. Advanced Energy Materials,2013,3(4):451-456. doi: 10.1002/aenm.201200808
    [15]
    ZHU Yingke, ZHU Yujie, HUANG Xingyi, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets[J]. Advanced Energy Materials,2019,9(36):1901826. doi: 10.1002/aenm.201901826
    [16]
    TANG Haixiong, LIN Yirong, ANDREWS Clark, et al. Nanocomposites with increased energy density through high aspect ration PZT nanowires[J]. Nanotechnology,2011,22(1):015702. doi: 10.1088/0957-4484/22/1/015702
    [17]
    TANG Haixiong, LIN Yirong, SODANO Henry A. Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly[J]. Advanced Energy Materials,2012,2(4):469-476. doi: 10.1002/aenm.201100543
    [18]
    ZHONG Shaolong, DANG Zhimin, ZHA Junwei. Prediction on effective permittivity of 0–3 connectivity particle/polymer composites at low concentration with finite element method[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2018,25(6):2122-2128. doi: 10.1109/TDEI.2018.007193
    [19]
    MYROSHNYCHENKO V, BROSSEAU C. Finite-element method for calculation of the effective permittivity of random inhomogeneous media[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics,2005,71(1):016701.
    [20]
    WANG Z P, KEITH-NELSON J, HILLBORG H, et al. Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models[J]. Composites Science and Technology,2013,76:29-36. doi: 10.1016/j.compscitech.2012.12.014
    [21]
    TANG Haixiong, ZHOU Zhi, SODANO Henry A. Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites[J]. ACS Applied Materials Interfaces,2014,6(8):5450-5455.
    [22]
    ZHONG Shaolong, YIN Lijuan, PEI Jiayao, et al. Effect of fiber alignment on dielectric response in the 1–3 connectivity fiber/polymer composites by quantitative evaluation[J]. Applied Physics Letters,2018,113:122904. doi: 10.1063/1.5049122
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (983) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return