Volume 38 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
LIU Lingwei, ZOU Xinquan, ZHANG Hong, et al. Preparation and thermal properties of three-dimensional cage-like PolyN-methylethylamine/Polyethylene glycol semi-interpenetrating network composite phase change microspheres[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1098-1106. doi: 10.13801/j.cnki.fhclxb.20200831.004
Citation: LIU Lingwei, ZOU Xinquan, ZHANG Hong, et al. Preparation and thermal properties of three-dimensional cage-like PolyN-methylethylamine/Polyethylene glycol semi-interpenetrating network composite phase change microspheres[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1098-1106. doi: 10.13801/j.cnki.fhclxb.20200831.004

Preparation and thermal properties of three-dimensional cage-like PolyN-methylethylamine/Polyethylene glycol semi-interpenetrating network composite phase change microspheres

doi: 10.13801/j.cnki.fhclxb.20200831.004
  • Received Date: 2020-06-08
  • Accepted Date: 2020-08-11
  • Available Online: 2020-09-01
  • Publish Date: 2021-04-08
  • Using N-methylol acrylamide (N-MA) and polyethylene glycol (PEG) eutectic as raw materials, poly-N-methylol acrylamide (PN-MA)/PEG semi-interpenetrating network was prepared by emulsion polymerization (SIPN) composite phase change material (CPCM). The structure and performance of (PN-MA)/PEG CPCM were characterized using FTIR, XRD, differential scanning calorimeter (DSC), SEM, EDS and other methods. The results show that the crystallization enthalpy and melting enthalpy of the obtained CPCM reach 78.38 J/g and 82.31 J/g, and the crystallization temperature and melting temperature are 36.88°C and 32.05°C respectively; the interaction between PN-MA and PEG in CPCM is physical link, no other chemical reaction occurs; the obtained CPCM is spherical and the size is relatively uniform. The small spheres with a diameter of about 200 nm are aggregated to form large spheres with a diameter of 10 μm to 15 μm. The sphere presents a dense three-dimensional net cage structure; PEG is well supported under the constraints of the cross-linked PN-MA network, and still has good crystallization performance.

     

  • loading
  • [1]
    孟多, 赵康, 王东旭. 二元脂肪酸/硅藻土助滤剂定形相变复合材料的制备及性能[J]. 复合材料学报, 2018, 35(9):2558-2565.

    MENG Duo, ZHAO Kang, WANG Dongxu. Preparation and properties of binary fatty acid mixture/diatomite filter aid form-stable phase change composite[J]. Acta Materiae Compositae Sinica,2018,35(9):2558-2565(in Chinese).
    [2]
    孙东, 荆晓磊. 相变储热研究进展及综述[J]. 节能, 2019, 38(4):154-157. doi: 10.3969/j.issn.1004-7948.2019.04.062

    SUN Dong, JING Xiaolei. Progress and review of phase change heat storage research[J]. Energy Conservation,2019,38(4):154-157(in Chinese). doi: 10.3969/j.issn.1004-7948.2019.04.062
    [3]
    相虎昌, 张百浩. 相变蓄热材料在供热系统中设计应用案例分析[J]. 节能, 2019, 38(2):71-72.

    XIANG Huchang, ZHANG Baihao. Case study on the design and application of phase change heat storage materials in heating systems[J]. Energy Conservation,2019,38(2):71-72(in Chinese).
    [4]
    许卓新. 相变储能材料的分类及应用探究[J]. 中国设备工程, 2019(2):116-117.

    XU Zhuoxin. Research on the classification and application of phase change energy storage materials[J]. China Plant Engineering,2019(2):116-117(in Chinese).
    [5]
    李海丽, 季旭, 冷从斌, 等. 膨胀石墨/五水硫代硫酸钠相变储能复合材料热性能[J]. 复合材料学报, 2016, 33(12):2941-2951.

    LI Haili, JI Xu, LENG Congbin, et al. Thermal performance of expanded graphite/Na2S2O3·5H2O phase change energy storage composite[J]. Acta Materiae Compositae Sinica,2016,33(12):2941-2951(in Chinese).
    [6]
    张向倩. 相变储能材料的研究进展与应用[J]. 现代化工, 2019, 39(4):67-70.

    ZHANG Xiangqian. Research progress and applications of phase change materials for energy storage[J]. Modern Chemical Industry,2019,39(4):67-70(in Chinese).
    [7]
    王迎斌, 张海峰, 贺行洋, 等. 相变材料的研究进展及应用[J]. 建材世界, 2020, 41(2):6-8.

    WANG Yingbin, ZHANG Haifeng, HE Xingyang, et al. Research progress and application of phase change materials[J]. The World Building Materials,2020,41(2):6-8(in Chinese).
    [8]
    赵雅楠, 康智强. 相变储能技术分析及材料应用[J]. 科技风, 2018(23):123.

    ZHAO Ya'nan, KANG Zhiqiang. Phase change energy storage technology analysis and material application[J]. Technology Wind,2018(23):123(in Chinese).
    [9]
    张东, 周剑敏, 吴科如, 等. 颗粒型相变储能复合材料[J]. 复合材料学报, 2004(5):103-109. doi: 10.3321/j.issn:1000-3851.2004.05.020

    ZHANG Dong, ZHOU Jianmin, WU Keru, et al. Granulated phase changing composite for energy storage[J]. Acta Materiae Compositae Sinica,2004(5):103-109(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.05.020
    [10]
    MAZLAN A W, SEYED E H, HASANEN M H, et al. An overview of phase change materials for construction architecture thermal management in hot and dry climate region[J]. Applied Thermal Engineering,2017,112:1240-1259.
    [11]
    陈少磊, 田玉琢. 相变材料的发展及应用[J]. 上海节能, 2018(7):519-522.

    CHEN Shaolei, TIAN Yuzhuo. Development and application of phase change material[J]. Shanghai Energy Conservation,2018(7):519-522(in Chinese).
    [12]
    何媚质, 杨鲁伟, 张振涛. 有机-无机复合相变材料的研究进展[J]. 化工进展, 2018, 37(12):4709-4718.

    HE Meizhi, YANG Luwei, ZHANG Zhentao. Research progress of organic-inorganic composite phase change materials[J]. Chemical Industry and Engineering Progress,2018,37(12):4709-4718(in Chinese).
    [13]
    赵亮, 邢玉明, 芮州峰, 等. 空气浴条件下三水醋酸钠相变材料的储热性能实验[J]. 复合材料学报, 2018, 35(8):2208-2215.

    ZHAO Liang, XING Yuming, RUI Zhoufeng, et al. Experimental study on the thermal energy storage characteristic of sodium acetate trihydrate as phase change material under the air bath condition[J]. Acta Materiae Compositae Sinica,2018,35(8):2208-2215(in Chinese).
    [14]
    戴远哲, 唐波, 李旭飞, 等. 相变蓄热材料研究进展[J]. 化学通报, 2019, 82(8):717-724, 730.

    DAI Yuanzhe, TANG Bo, LI Xufei, et al. Research progress in phase change heat storage materials[J]. Chemistry,2019,82(8):717-724, 730(in Chinese).
    [15]
    王鑫, 方建华, 刘坪, 等. 相变材料的研究进展[J]. 功能材料, 2019, 50(2):2070-2075.

    WANG Xin, FANG Jianhua, LIU Ping, et al. Research progress of phase change materials[J]. Functional Materials,2019,50(2):2070-2075(in Chinese).
    [16]
    尚建丽, 张浩. 癸酸-棕榈酸/SiO2相变储湿复合材料的制备与表征[J]. 复合材料学报, 2016, 33(2):341-349.

    SHANG Jianli, ZHANG Hao. Preparation and characterization of decanoic acid-palmic acid/SiO2 phase change and humidity storage composites[J]. Acta Materiae Compositae Sinica,2016,33(2):341-349(in Chinese).
    [17]
    WAN X, SU L, GUO B H. Design and preparation of novel shapeable PEG/SiO2/AA shape-stabilized phase change materials based on double-locked network with enhanced heat storage capacity for thermal energy regulation and storage[J]. Powder Technology,2019,353:98-109.
    [18]
    张焕芝, 崔韦唯, 夏永鹏, 等. 复合相变材料的制备及热性能研究进展[J]. 化工新型材料, 2019, 47(6):35-38, 43.

    ZHANG Huanzhi, CUI Weiwei, XIA Yongpeng, et al. Research progress in preparation and thermal performance of composite PCMs[J]. New Chemical Materials,2019,47(6):35-38, 43(in Chinese).
    [19]
    ZHANG H, YANG S, LIU H, et al. Preparation of PNHMPA/PEG interpenetrating polymer networks gel and its application for phase change fibers[J]. Journal of Applied Polymer Science,2013,129(3):1563-1568.
    [20]
    郭玺, 曹金珍, 王佳敏. 聚乙二醇改性相变微胶囊-木粉/高密度聚乙烯复合材料的制备与热性能[J]. 复合材料学报, 2017, 34(6):1185-1190.

    GUO Xi, CAO Jinzhen, WANG Jiamin. Preparation and thermal properties of WF/HDPE composites filled with microcapsules modified by polyethylene glycol[J]. Acta Materiae Compositae Sinica,2017,34(6):1185-1190(in Chinese).
    [21]
    李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020,39(12): 5066-5085.

    LI Zhao, LI Baorang, CHEN Haozhi. State of the art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5066-5085(in Chinese).
    [22]
    ZOU X Q, ZHOU W D, SHI J F, et al. Preparation and characterization of poly (N-methylol acrylamide)/polyethylene glycol composite phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2020,205:110248.
    [23]
    张圆圆, 杨建森. 脂肪酸相变材料的封装制备及热工性质[J].材料导报, 2020,34(16): 16144-16148.

    ZHANG Yuanyuan, YANG Jiansen. Packaging preparation and thermal properties of fatty acid phase change material[J]. Material Review, 2020, 34(16): 16144-16148(in Chinese).
    [24]
    王迎辉, 章学来, 纪珺, 等. 正辛酸-肉豆蔻酸/膨胀石墨定形复合相变材料的制备和热物性[J]. 上海海事大学学报, 2019, 40(4):105-110.

    WANG Yinghui, ZHANG Xuelai, JI Jun, et al. Preparation and thermophysical properties of octanoic acid-myristic acid/expanded graphite shape-stabilized composite phase-change material[J]. Journal of Shanghai Maritime University,2019,40(4):105-110(in Chinese).
    [25]
    SEDAT K, ALI K, AHMET S, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2011,95(7):1647-1653.
    [26]
    JEONG S G, JEON J, LEE J H, et al. Optimal preparation of PCM/diatomite composites for enhancing thermal properties[J]. International Journal of Heat & Mass Transfer,2013,62:711-717.
    [27]
    BICER A, SARI A. New kinds of energy-storing building composite PCMs for thermal energy storage[J]. Energy Conversion & Management,2013,69:148-156.
    [28]
    LIU S, YANG H. Porous ceramic stabilized phase change materials for thermal energy storage[J]. RSC Advances,2016,6:48033-48042.
    [29]
    LI R, ZHU J, ZHOU W, et al. Thermal compatibility of sodium nitrate/expanded perlite composite phase change materials[J]. Applied Thermal Engineering,2016,103:452-458.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views (2720) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return