Volume 37 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
CAI Yanzhi, WANG Yuan, CHENG Laifei, et al. High-temperature electromagnetic shielding and dielectric properties of CNT buckypaper/SiC symmetric graded laminated composite[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2877-2888. doi: 10.13801/j.cnki.fhclxb.20200723.001
Citation: CAI Yanzhi, WANG Yuan, CHENG Laifei, et al. High-temperature electromagnetic shielding and dielectric properties of CNT buckypaper/SiC symmetric graded laminated composite[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2877-2888. doi: 10.13801/j.cnki.fhclxb.20200723.001

High-temperature electromagnetic shielding and dielectric properties of CNT buckypaper/SiC symmetric graded laminated composite

doi: 10.13801/j.cnki.fhclxb.20200723.001
  • Received Date: 2020-04-30
  • Accepted Date: 2020-07-02
  • Available Online: 2020-07-23
  • Publish Date: 2020-11-15
  • A single-layer carbon nanotube (CNT) buckypaper densified by phenolic resin and then welded by resin-derived carbon layer by layer was proposed to obtain a CNT buckypaper/SiC laminated graded composite with a thickness of 2.6 mm in this paper. The CNT buckypaper/SiC laminated graded composite consists of 13 structural layers made of CNT buckypaper/SiC composites and 12 interface layers made of expanded graphite-toughened resin-derived carbon, in which the SiC content increases gradually from the center to both ends with symmetrically distribution along thickness. The CNT buckypaper/SiC laminated graded composite has a volume density of 1.65 g/cm3 and an open porosity of 7.25%. High content CNT with uniform dispersion distribution in SiC matrix was obtained at a macroscopic scale. The average total shielding effectiveness of the CNT buckypaper/SiC laminated graded composite at 600℃ (37.19 dB) is higher than that at room temperature (35.00 dB) throughout the X-band. Compared with the shielding performance at room temperature, the reflection coefficient decreases slightly, but the absorption coefficient increases significantly, and the transmission coefficient decreases from 0.0003 to 0.0002 at 600℃, which forecasts a promising prospect of electromagnetic shielding applications, especially of a high-temperature shielding application. The average value throughout the X-band of the imaginary permittivity increases from 114.6 to 149.1, and that of the loss tangent increases from 1.62 to 1.79, respectively, with the increase of temperature from room temperature to 600℃.

     

  • loading
  • [1]
    MICHELI D, APOLLO C, PASTORE R, et al. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation[J]. Composites Science and Technology,2010,70(2):400-409. doi: 10.1016/j.compscitech.2009.11.015
    [2]
    肇研, 段跃新, 李蔚慰, 等. 多壁碳纳米管复合材料在8 mm波段的吸波性能[J]. 复合材料学报, 2007, 24(3):23-27. doi: 10.3321/j.issn:1000-3851.2007.03.005

    ZHAO Yan, DUAN Yuexin, LI Weiwei, et al. Radar absorbing property in eight millimetre wave of MWCNTs/GF/epoxy composites[J]. Acta Materiae Compositae Sinica,2007,24(3):23-27(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.03.005
    [3]
    赵琪, 马俊宾, 谢明, 等. 超声喷雾化学镀法制备镀Ni碳纳米管及其微波吸收性能[J]. 复合材料学报, 2018, 35(1):117-123.

    ZHAO Qi, MA Junbin, XIE Ming, et al. Ultrasonic spray preparation of chemical Ni-plating carbon nanotubes and microwave absorbing properties[J]. Acta Materiae Compositae Sinicas,2018,35(1):117-123(in Chinese).
    [4]
    MANIECKI T, SHTYKA O, MIERCZYNSKI P, et al. Carbon nanotubes: Properties, synthesis, and application[J]. Fibre Chemistry,2018,50(4):297-300.
    [5]
    AKBULUT H, NALCI D, GULER A, et al. Carbon-silicon composite anode electrodes modified with MWCNT for high energy battery applications[J]. Applied Surface Science,2018,446:222-229. doi: 10.1016/j.apsusc.2018.01.102
    [6]
    LIU X, YIN X, KONG L, et al. Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites[J]. Carbon,2014,68:501-510. doi: 10.1016/j.carbon.2013.11.027
    [7]
    MEI H, HAN D, XIAO S, et al. Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers[J]. Carbon,2016,109:149-153. doi: 10.1016/j.carbon.2016.07.070
    [8]
    YIN X, KONG L, ZHANG L, et al. Electromagnetic properties of Si—C—N based ceramics and composites[J]. International Materials Reviews,2014,59(6):326-356. doi: 10.1179/1743280414Y.0000000037
    [9]
    MORISADA Y, MIYAMOTO Y, TAKAURA Y, et al. Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes[J]. International Journal of Refractory Metals and Hard Materials,2007,25(4):322-327. doi: 10.1016/j.ijrmhm.2006.08.005
    [10]
    MEI H, ZHAO X, GUI X, et al. SiC encapsulated Fe@CNT ultra-high absorptive shielding material for high temperature resistant EMI shielding[J]. Ceramics International,2019,45(14):17144-17151. doi: 10.1016/j.ceramint.2019.05.268
    [11]
    CAI Y, CHEN L, YANG H, et al. Mechanical and electrical properties of carbon nanotube buckypaper reinforced silicon carbide nanocomposites[J]. Ceramics International,2016,42(4):4984-4992. doi: 10.1016/j.ceramint.2015.12.011
    [12]
    BI S, MA L, MEI B, et al. Silicon carbide/carbon nanotube heterostructures: Controllable synthesis, dielectric properties and microwave absorption[J]. Advanced Powder Technology,2014,25(4):1273-1279. doi: 10.1016/j.apt.2014.03.001
    [13]
    DING D, WANG J, YU X, et al. Dispersing of functionalized CNTs in Si—O—C ceramics and electromagetic wave absorbing and mechanical properties of CNTs/Si—O—C nanocomposites[J]. Ceramics International,2020,46(4):5407-5419. doi: 10.1016/j.ceramint.2019.10.297
    [14]
    LANFANT B, LECONTE Y, DEBSKI N, et al. Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites[J]. Ceramics International,2019,45(2):2566-2575. doi: 10.1016/j.ceramint.2018.10.187
    [15]
    HAN D, MEI H, XIAO S, et al. A review on the processing technologies of carbon nanotube/silicon carbide composites[J]. Journal of the European Ceramic Society,2018,38(11):3695-3708. doi: 10.1016/j.jeurceramsoc.2018.04.033
    [16]
    DOLATI S, AZARNIYA A, AZARNIYA A, et al. Toughening mechanisms of SiC-bonded CNT bulk nanocomposites prepared by spark plasma sintering[J]. International Journal of Refractory Metals & Hard Materials,2018,71:61-69.
    [17]
    JIANG D, ZHANG J, LV Z. Multi-wall carbon nanotubes (MWCNTs)-SiC composites by laminated technology[J]. Journal of the European Ceramic Society,2012,32(7):1419-1425. doi: 10.1016/j.jeurceramsoc.2011.07.035
    [18]
    SONG N, LIU H, FANG J. Fabrication and mechanical properties of multi-walled carbon nanotube reinforced reaction bonded silicon carbide composites[J]. Ceramics International,2016,42(1):351-356. doi: 10.1016/j.ceramint.2015.08.117
    [19]
    LI Y, FERNANDEZ-RECIO L, GERSTEL P, et al. Chemical modification of single-walled carbon nanotubes for the reinforcement of precursor-derived ceramics[J]. Chemistry of Materials,2008,20(17):5593-5599. doi: 10.1021/cm801125k
    [20]
    CANDELARIO V M, MORENO R, GUIBERTEAU F, et al. Enhancing the sliding-wear resistance of SiC nanostructured ceramics by adding carbon nanotubes[J]. Journal of the European Ceramic Society,2016,36(13):3083-3089. doi: 10.1016/j.jeurceramsoc.2016.05.004
    [21]
    KUMARI L, ZHANG T, DU G H, et al. Thermal properties of CNT-Alumina nanocomposites[J]. Composites Science and Technology,2008,68(9):2178-2183. doi: 10.1016/j.compscitech.2008.04.001
    [22]
    KAUSHIK B K, MAJUMDER M K. Carbon nanotube based VLSI interconnects analysis and design[M]. New Delhi: Springer, 2015.
    [23]
    CANDELARIO V M, MORENO R, SHEN Z, et al. Liquid-phase assisted spark-plasma sintering of SiC nanoceramics and their nanocomposites with carbon nanotubes[J]. Journal of the European Ceramic Society,2017,37(5):1929-1936. doi: 10.1016/j.jeurceramsoc.2016.12.050
    [24]
    YANG L W, ZHANG X S, LIU H T, et al. Thermal resistant, mechanical and electrical properties of a novel ultrahigh-content randomly-oriented CNTs reinforced SiC matrix composite-sheet[J]. Composites Part B: Engineering,2017,119:10-17. doi: 10.1016/j.compositesb.2017.03.039
    [25]
    GU Z, YANG Y, LI K, et al. Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration[J]. Carbon,2011,49(7):2475-2482. doi: 10.1016/j.carbon.2011.02.016
    [26]
    MEI H, ZHANG H, XU Y, et al. Fabrication and mechanical properties of SiC composites toughened by buckypaper and carbon fiber fabrics alternately laminated[J]. Ceramics International,2017,43(15):12280-12286. doi: 10.1016/j.ceramint.2017.06.090
    [27]
    蔡艳芝, 尹洪峰, 周媛, 等. 一种碳纳米管增强SiC基纳米复合材料膜的制备方法: 中国, ZL201410475361.1[P]. 2015-01-21 .

    CAI Yanzhi, YIN Hongfeng, ZHOU Yuan, et al. A preparation method of carbon nanotube reinforced SiC based nanocomposite membrane: China, ZL201410475361.1[P]. 2015-01-21(in Chinese).
    [28]
    蔡艳芝, 尹洪峰, 周媛, 等. 一种真空-定向加压浸渍装置: 中国, ZL2014205256055.8[P]. 2015-02-18.

    CAI Yanzhi, YIN Hongfeng, ZHOU Yuan, et al. A vacuum directional pressure impregnation device: China, ZL2014205256055.8[P]. 2015-02-18(in Chinese).
    [29]
    CHEN L, YIN X, FAN X, et al. Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites[J]. Carbon,2015,95:10-19. doi: 10.1016/j.carbon.2015.08.011
    [30]
    KONG L, YIN X, HAN M, et al. Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures[J]. Ceramics International,2015,41(3):4906-4915. doi: 10.1016/j.ceramint.2014.12.052
    [31]
    CAI Y, FAN S, YIN X, et al. Microstructures and mechanical properties of three-dimensional ceramic filler modified carbon/carbon composites[J]. Ceramics International,2014,40(1):399-408. doi: 10.1016/j.ceramint.2013.06.015
    [32]
    郭海珠, 余森. 实用耐火原料手册[M]. 1版. 北京: 中国建材工业出版社, 2000年.

    GUO Haizhu, YU Sen. Handbook of practical refractory materials[M]. 1st Edition. Beijing: China Building Materials Industry Press, 2000(in Chinese).
    [33]
    AL-SALEH M H, SUNDARARAJ U. X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites[J]. Journal of Physics D: Applied Physics,2013,46(3):035304.
    [34]
    AL-SALEH M H, SAADEH W H, SUNDARARAJ U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study[J]. Carbon,2013,60:146-156. doi: 10.1016/j.carbon.2013.04.008
    [35]
    AL-SALEH M H, SUNDARARAJ U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon,2009,47(7):1738-1746. doi: 10.1016/j.carbon.2009.02.030
    [36]
    TAN Y, LUO H, ZHANG H, et al. High-temperature electromagnetic interference shielding of layered Ti3AlC2 ceramics[J]. Scripta Materialia,2017,134:47-51. doi: 10.1016/j.scriptamat.2017.02.043
    [37]
    WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon,2013,65:124-139. doi: 10.1016/j.carbon.2013.07.110
    [38]
    MU Y, LI H, DENG J, et al. Temperature-dependent electromagnetic shielding properties of SiCf/BN/SiC composites fabricated by chemical vapor infiltration process[J]. Journal of Alloys and Compounds,2017,724:633-640. doi: 10.1016/j.jallcom.2017.07.084
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1325) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return