Volume 38 Issue 5
May  2021
Turn off MathJax
Article Contents
DU Tingting, YE Yunxia, LIU Yuanfang, et al. Tailoring CFRP composite surface wettability with nanosecond laser and its effect on bonding performance[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1435-1445. doi: 10.13801/j.cnki.fhclxb.20200921.003
Citation: DU Tingting, YE Yunxia, LIU Yuanfang, et al. Tailoring CFRP composite surface wettability with nanosecond laser and its effect on bonding performance[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1435-1445. doi: 10.13801/j.cnki.fhclxb.20200921.003

Tailoring CFRP composite surface wettability with nanosecond laser and its effect on bonding performance

doi: 10.13801/j.cnki.fhclxb.20200921.003
  • Received Date: 2020-06-24
  • Accepted Date: 2020-09-06
  • Available Online: 2020-09-21
  • Publish Date: 2021-05-01
  • In this article, nanosecond laser was used to pretreat carbon fiber reinforced plastics (CFRP) composite surface, realizing modifying its surface component, roughness and surface wettability. Then the bonding strengths were tested through tensile shear experiment. The surface morphology, contact angle, surface roughness and chemical component were observed and characterized via SEM, contact angle measuring instrument, optical profiler and XPS. The results indicate that with different laser parameters, the epoxy resin on the surface of CFRP composite can be removed, changing the surface component, roughness and surface wettability, and then improving the bonding strength. Compared with the untreated CFRP composites, after laser surface treatment, the bonding strength of CFRP composites increases with the increase of surface wettability and surface roughness, and also changing with the change of chemical component. On the basis of untreated CFRP composites, when the laser defocus is 5 mm, 10 mm and 15 mm, respectively, the bonding strengths are increased by 129.41%, 112.13% and 105.88%, respectively. The surface wettability and surface roughness of laser treated CFRP composites are greater than those of the mechanically-treated CFRP composites. However, the heat damage caused by nanosecond laser treatment has a negative effect on improvement of bonding strength. Therefore, the bonding strength of the nanosecond laser treated CFRP composites are lower than that of mechanically- treated CFRP composites. That is to say, laser treatment process should be furtherly optimized to demonstrate the advantages of laser treatment.

     

  • loading
  • [1]
    李威, 郭权锋. 碳纤维复合材料在航天领域的应用[J]. 中国光学, 2011, 4(3):201-212. doi: 10.3969/j.issn.2095-1531.2011.03.001

    LI W, GUO Q F. Application of carbon fiber composites to cosmonautic fields[J]. Chinese Optics,2011,4(3):201-212(in Chinese). doi: 10.3969/j.issn.2095-1531.2011.03.001
    [2]
    罗益锋. 碳纤维及其复合材料在主要应用领域的突破方向与技术进展[J]. 高科技纤维与应用, 2019, 44(6):1-12.

    LUO Y F. Breakthrough direction and technical progress of carbon fiber and its CFRP in main application areas[J]. Hi-Tech Fiber and Application,2019,44(6):1-12(in Chinese).
    [3]
    王冰佳, 黄强, 呼慧. 复合材料及碳纤维在风力机叶片中的应用现状[J]. 电站系统工程, 2019, 35(3):43-45.

    WANG B J, HUANG Q, HU H. Application status and development of wind power blade carbon fiber composites[J]. Power System Engineering,2019,35(3):43-45(in Chinese).
    [4]
    杜姗姗. 碳纤维及其复合材料的应用[J]. 化纤与纺织技术, 2013, 42(4):21-26. doi: 10.3969/j.issn.1672-500x.2013.04.006

    DU S S. Application of carbon fiber and its composites[J]. Chemical Fiber and Textile Technology,2013,42(4):21-26(in Chinese). doi: 10.3969/j.issn.1672-500x.2013.04.006
    [5]
    荆楠. 碳纤维复合材料连接技术研究[J]. 科技风, 2019(4):206-207.

    JING N. The research of joint techniques for carbon fiber composite materials[J]. Technology Wind,2019(4):206-207(in Chinese).
    [6]
    BALDAN A. Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment[J]. Journal of Materials Science,2004,39(1):1-49.
    [7]
    LIU Y, ZHANG X, SONG C C, et al. An effective surface modification of carbon fiber for improving the interfacial adhesion of polypropylene composites[J]. Materials and Design,2015,88:810-819.
    [8]
    易增博, 冯利邦, 郝相忠, 等. 表面处理对碳纤维及其复合材料性能的影响[J]. 材料研究学报, 2015, 29(1):67-74. doi: 10.11901/1005.3093.2014.322

    YI Z B, FENG L B, HAO X Z, et al. Effect of surface treatment on properties of carbon fiber and reinforced composites[J]. Chinese Journal of Materials Research,2015,29(1):67-74(in Chinese). doi: 10.11901/1005.3093.2014.322
    [9]
    刘晓东, 吴磊, 孔谅, 等. 空气等离子处理对碳纤维增强复合材料表面特性及胶接性能的影响[J]. 上海交通大学学报, 2019, 53(8):971-977.

    LIU X D, WU L, KONG L, et al. Effect of surface and adhesive-bonded properties of carbon fiber reinforced plastic/polymer and atmosphere plasma processing[J]. Journal of Shanghai Jiaotong University,2019,53(8):971-977(in Chinese).
    [10]
    GENNA S, LEONE C, UCCIARDELLO N, et al. Increasing adhesive bonding of carbon fiber reinforced thermoplastic matrix by laser surface treatment[J]. Polymer Engineering and Science,2017,57(7):685-692.
    [11]
    GAO Q, LI Y, WANG H E, et al. Effect of scanning speed with UV laser cleaning on adhesive bonding tensile properties of CFRP[J]. Applied Composite Materials,2019,26(4):1087-1099.
    [12]
    SEE T L, LIU Z, CHEETHAM S, et al. Laser abrading of carbon fiber reinforced composite for improving paint adhesion[J]. Applied Physics A,2014,117(3):1045-1054.
    [13]
    LI Y Y, MENG S, GONG Q M, et al. Experimental and theoretical investigation of laser pretreatment on strengthening the heterojunction between carbon fiber-reinforced plastic and aluminum alloy[J]. ACS Applied Materials and Interfaces,2019,11(24):22005-22014.
    [14]
    AKMAN E, ERDOĞ AN Y, BORA M Ö, et al. Investigation of accumulated laser fluence and bond line thickness effects on adhesive joint performance of CFRP composites[J]. International Journal of Adhesion and Adhesives,2019,89:109-116.
    [15]
    中国国家标准化管理委员会. 胶粘剂单搭接拉伸剪切强度试验方法: GB/T 33334—2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People’s Republic of China. Single-lap tensile shear strength testing of adhesive: GB/T 33334—2016[S]. Beijing: China Standards Press, 2016(in Chinese).
    [16]
    吴瑶, 孔海娟, 丁小马, 等. 激光处理对CFRP与铝胶接性能的研究[J]. 玻璃钢/复合材料, 2018(4):56-61.

    WU Y, KONG H J, DING X M, et al. Effect of laser treatment on properties of CFRP/aluminum adhesive[J]. Fiber Reinforced Plastics/Composites,2018(4):56-61(in Chinese).
    [17]
    徐广标, 杨立荣. 3种天然纤维表面自由能计算与评价[J]. 东华大学学报(自然科学版), 2013, 39(3):280-282, 337.

    XU G B, YANG L R. Calculating and evaluation of surface free energy of three kinds of natural fibers[J]. Journal of Donghua University (Natural Science),2013,39(3):280-282, 337(in Chinese).
    [18]
    BUSSCHER H J, PELT A W J V, BOER P D, et al. The effect of surface roughening of polymers on measured contact angles of liquids[J]. Colloids and Surfaces,1984,9(4):319-331.
    [19]
    中国国家标准化管理委员会. 胶粘剂–主要破坏类型的表示法: GB/T 16997—1997[S]. 北京: 中国标准出版社, 1998.

    Standardization Administration of the People’s Republic of China. Adhesives-designation of main failure patterns: GB/T 16997—1997[S]. Beijing: China Standards Press, 1998(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (1280) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return