Volume 41 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
GUI Yanghai, WU Jintao, TIAN Kuan, et al. Preparation and H2S sensing performance of Co(CO3)0.5(OH)·0.11H2O/WO3 nanomaterials[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 816-826. doi: 10.13801/j.cnki.fhclxb.20230703.001
Citation: GUI Yanghai, WU Jintao, TIAN Kuan, et al. Preparation and H2S sensing performance of Co(CO3)0.5(OH)·0.11H2O/WO3 nanomaterials[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 816-826. doi: 10.13801/j.cnki.fhclxb.20230703.001

Preparation and H2S sensing performance of Co(CO3)0.5(OH)·0.11H2O/WO3 nanomaterials

doi: 10.13801/j.cnki.fhclxb.20230703.001
Funds:  National Natural Science Foundation of China (U1904213; U20041102); 2023 Science and Technology Development Plan of Henan Province (232102230128)
  • Received Date: 2023-04-03
  • Accepted Date: 2023-06-24
  • Rev Recd Date: 2023-06-08
  • Available Online: 2023-07-03
  • Publish Date: 2024-02-01
  • In recent years, H2S as a novel biomarker for asthma and chronic obstructive pulmonary disease is of great significance to human health monitoring, so it is urgent to study H2S sensors with low power consumption, high selectivity, low detection limit and high stability. Co(CO3)0.5(OH)·0.11H2O/WO3 nanomaterials were synthesized by a two-step in situ growth method. Different Co(CO3)0.5(OH)·0.11H2O/WO3 nanomaterials were grown in situ on WO3 nanosheets by regulating the water bath reaction time using WO3 nanosheets as a substrate synthesized by in situ hydrothermal method. The composites were characterized by FE-SEM, FTIR, XRD and TG, and then tested for gas sensing performance. The results show that the Co(CO3)0.5(OH)·0.11H2O/WO3 composite prepared after 20 min reaction has the best gas-sensitive property, and the response value to 50×10−6 H2S gas at the optimal working temperature (90℃) is as high as 109. The response and recovery time are 130 s and 182 s respectively, showing excellent selectivity for H2S gas. The composite still has a good response/recovery curve in low concentration H2S (3×10−6) atmosphere. In three repeated tests conducted in one month, it showed good repeatability and long-term stability. The in-situ preparation of Co(CO3)0.5(OH)·0.11H2O/WO3 gas sensing materials and the study of gas sensing properties provide a new idea for the preparation of gas sensing devices and a new way for the diversity of gas sensing materials. It has potential application value in environmental detection and intelligent medical treatment.

     

  • loading
  • [1]
    NAKATE U T, BHUYAN P, YU Y T, et al. Synthesis and characterizations of highly responsive H2S sensor using p-type Co3O4 nanoparticles/nanorods mixed nanostructures[J]. International Journal of Hydrogen Energy,2022,47(12):8145-8154. doi: 10.1016/j.ijhydene.2021.12.115
    [2]
    WANG Y, ZHANG S, XIAO D, et al. CuO/WO3 hollow microsphere p-n heterojunction sensor for continuous cycle detection of H2S gas[J]. Sensors and Actuators B: Chemical,2023,374:132823. doi: 10.1016/j.snb.2022.132823
    [3]
    ALIANNEZHADI M, ABBASPOOR M, SHARIATMADAR TEHRANI F, et al. High photocatalytic WO3 nanoparticles synthesized using sol-gel method at different stirring times[J]. Optical and Quantum Electronics,2023,55(3):250. doi: 10.1007/s11082-022-04540-8
    [4]
    ICIEK M, BILSKA WILKOSZ A, KOZDROWICKI M, et al. Reactive sulfur species and their significance in health and disease[J]. Bioscience Reports,2022,42(9):BSR20221006. doi: 10.1042/BSR20221006
    [5]
    MOBTAKERI, HABASHYANI S, ÇOBAN Ö, et al. Effect of growth pressure on sulfur content of RF-magnetron sputtered WS2 films and thermal oxidation properties of them toward using Pd decorated WO3 based H2 gas sensor[J]. Sensors and Actuators B: Chemical,2023,381:133485. doi: 10.1016/j.snb.2023.133485
    [6]
    TAN Y, ZHANG J. Highly sensitive ethanol gas sensors based on Co-doped SnO2 nanobelts and pure SnO2 nanobelts[J]. Physica E: Low-dimensional Systems and Nanostructures,2023,147:115604. doi: 10.1016/j.physe.2022.115604
    [7]
    TSENG S F, CHEN P S, HSU S H, et al. Investigation of fiber laser-induced porous graphene electrodes in controlled atmospheres for ZnO nanorod-based NO2 gas sensors[J]. Applied Surface Science,2023,620:156847. doi: 10.1016/j.apsusc.2023.156847
    [8]
    YIN J, LYU D, ZHAO J, et al. ZnO-MEMS sensor-cell prepared by inkjet printing for low concentration acetone detection[J]. Materials Letters,2023,340:134152. doi: 10.1016/j.matlet.2023.134152
    [9]
    MATHANKUMAR G, HARISH S, MOHAN M K, et al. Enhanced selectivity and ultra-fast detection of NO2 gas sensor via Ag modified WO3 nanostructures for gas sensing applications[J]. Sensors and Actuators B: Chemical,2023,381:133374. doi: 10.1016/j.snb.2023.133374
    [10]
    INABA M, ODA T, KONO M, et al. Effect of mixing ratio on NO2 gas sensor response with SnO2-decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly[J]. Sensors and Actuators B: Chemical,2021,344:130257. doi: 10.1016/j.snb.2021.130257
    [11]
    LIU S, WANG M, GE C, et al. Enhanced room-temperature NO2 sensing performance of SnO2/Ti3C2 composite with double heterojunctions by controlling co-exposed {221} and {110} facets of SnO2[J]. Sensors and Actuators B: Chemical,2022,365:131919. doi: 10.1016/j.snb.2022.131919
    [12]
    CHUMAKOVA V, MARIKUTSA A, PLATONOV V, et al. Distinct roles of additives in the improved sensitivity to CO of Ag-and Pd-modified nanosized LaFeO3[J]. Chemosensors,2023,11(1):60. doi: 10.3390/chemosensors11010060
    [13]
    GUO X, DING Y, LIANG C, et al. Humidity-activated H2S sensor based on SnSe2/WO3 composite for evaluating the spoilage of eggs at room temperature[J]. Sensors and Actuators B: Chemical,2022,357:131424. doi: 10.1016/j.snb.2022.131424
    [14]
    ZHU S, TIAN Q, WU G, et al. Highly sensitive and stable H2 gas sensor based on p-PdO-n-WO3-heterostructure-homogeneously-dispersing thin film[J]. International Journal of Hydrogen Energy,2022,47(40):17821-17834. doi: 10.1016/j.ijhydene.2022.03.237
    [15]
    HE B, LIU H, LIN Z, et al. A new photocatalyst based on Co(CO3)0.5(OH)·0.11H2O/Bi2WO6 nanocomposites for high-efficiency cocatalyst-free O2 evolution[J]. Chemical Engi-neering Journal,2019,359:924-932. doi: 10.1016/j.cej.2018.11.094
    [16]
    WANG C, WANG H, ZHAO D, et al. Simple synthesis of cobalt carbonate hydroxide hydrate and reduced graphene oxide hybrid structure for high-performance room temperature NH3 sensor[J]. Sensors,2019,19(3):615. doi: 10.3390/s19030615
    [17]
    WANG Y, CHEN Y, LIU Y, et al. Urchin-like Ni1/3Co2/3(CO3)0.5OH·0.11H2O anchoring on polypyrrole nanotubes for supercapacitor electrodes[J]. Electrochimica Acta,2019,295:989-996. doi: 10.1016/j.electacta.2018.11.116
    [18]
    LIU Q, CHEN Y, MA J, et al. Novel electrochemical deposition of Co(CO3)0.5(OH)∙0.11H2O nano-needles with folded umbrella-like architecture onto nickel foam for supercapacitors[J]. Surface and Coatings Technology,2021,421:127452. doi: 10.1016/j.surfcoat.2021.127452
    [19]
    HAN Y, LI H, ZHANG M, et al. Self-supported Co(CO3)0.5(OH)∙0.11H2O nanoneedles coated with CoSe2-Ni3Se2 nanoparticles as highly active bifunctional electrocatalyst for overall water splitting[J]. Applied Surface Science,2019,495:143606. doi: 10.1016/j.apsusc.2019.143606
    [20]
    LIU H F, WANG Y D, LIN M, et al. Cobalt sulfide nanoparticles decorated on TiO2 nanotubes via thermal vapor sulfurization of conformal TiO2-coated Co(CO3)0.5(OH)∙0.11H2O core-shell nanowires for energy storage applications[J]. RSC Advances,2015,5(60):48647-48653. doi: 10.1039/C5RA07444D
    [21]
    GUI Y, QIAN L, TIAN K, et al. In situ growth of oxygen defect-rich ultrathin WO3 nanosheets for ultrafast recovery NO2 sensors[J]. IEEE Sensors Journal,2023,23(1):119-126. doi: 10.1109/JSEN.2022.3219614
    [22]
    LINCY H, JOSHUA GNANAMUYHU S, JOBE PRABAKAR P C, et al. Improved room temperature gas sensing performances of pristine WO3 nano particles[J]. Materials Today: Proceedings, 2023, 80: 1656-1664.
    [23]
    ZHOU T, LU P, ZHANG Z, et al. Perforated Co3O4 nanoneedles assembled in chrysanthemum-like Co3O4 structures for ultra-high sensitive hydrazine chemical sensor[J]. Sensors and Actuators B: Chemical,2016,235:457-465. doi: 10.1016/j.snb.2016.05.075
    [24]
    TRIPATHI S, TRIPATHI D, RAWAT R K, et al. Room temperature operable solid-state sensors for selective methanol vapour detection from orthorhombic WO3 nanoplates[J]. Materials Letters,2023,335:133840. doi: 10.1016/j.matlet.2023.133840
    [25]
    HUANG J, HU Q, GUO X, et al. Rethinking Co(CO3)0.5(OH)∙0.11H2O: A new property for highly selective electrochemical reduction of carbon dioxide to methanol in aqueous solution[J]. Green Chemistry,2018,20(13):2967-2972. doi: 10.1039/C7GC03744A
    [26]
    WEN Z, ZHU L, LI Y, et al. Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor[J]. Sensors and Actuators B: Chemical,2014,203:873-879. doi: 10.1016/j.snb.2014.06.124
    [27]
    BAI S, LIU H, SUN J, et al. Mechanism of enhancing the formaldehyde sensing properties of Co3O4 via Ag modification[J]. RSC Advances,2015,5(60):48619-48625. doi: 10.1039/C5RA05772H
    [28]
    HOSSEINI Z S, MORTEZAALI A. Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures[J]. Sensors and Actuators B: Chemical,2015,207:865-871. doi: 10.1016/j.snb.2014.10.085
    [29]
    ZHU L Y, YUAN K P, YANG J H, et al. Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing[J]. Microsystems & Nanoengineering,2020,6(1):30.
    [30]
    YAN R, LIANG D T, TSEN L, et al. Kinetics and mechanisms of H2S adsorption by alkaline activated carbon[J]. Environmental Science & Technology,2002,36(20):4460-4466.
    [31]
    JANG J S, KOO W T, CHOI S J, et al. Metal organic framework-templated chemiresistor: Sensing type transition from P-to-N using hollow metal oxide polyhedron via galvanic replacement[J]. Journal of the American Chemical Society,2017,139(34):11868-11876. doi: 10.1021/jacs.7b05246
    [32]
    AMU-DARKO J N O, HUSSAIN S, ZHANG X, et al. Metal-organic frameworks-derived In2O3/ZnO porous hollow nanocages for highly sensitive H2S gas sensor[J]. Chemosphere,2023,314:137670. doi: 10.1016/j.chemosphere.2022.137670
    [33]
    XING X, XIAO X, WANG L, et al. Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites[J]. Sensors and Actuators B: Chemical,2017,247:797-806. doi: 10.1016/j.snb.2017.03.077
    [34]
    MAO L W, ZHU L Y, WU T T, et al. Excellent long-term stable H2S gas sensor based on Nb2O5/SnO2 core-shell heterostructure nanorods[J]. Applied Surface Science,2022,602:154339. doi: 10.1016/j.apsusc.2022.154339
    [35]
    XU T, ZHANG M, ZHAO F, et al. Highly sensitive detection of H2S gas at low temperature based on ZnCo2O4 microtube sensors[J]. Journal of Hazardous Materials,2022,440:129753. doi: 10.1016/j.jhazmat.2022.129753
    [36]
    SIK CHOI M, AHN J, YOUNG KIM M, et al. Changes in the crystal structure of SnO2 nanoparticles and improved H2S gas-sensing characteristics by Al doping[J]. Applied Surface Science,2021,565:150493. doi: 10.1016/j.apsusc.2021.150493
    [37]
    MODABERI M R, ROOYDELL R, BRAHMA S, et al. Enhanced response and selectivity of H2S sensing through controlled Ni doping into ZnO nanorods by using single metal organic precursors[J]. Sensors and Actuators B: Chemical,2018,273:1278-1290. doi: 10.1016/j.snb.2018.06.117
    [38]
    AKBARI-SAATLU M, PROCEK M, MATTSSON C, et al. Nanometer-thick ZnO/SnO2 heterostructures grown on alumina for H2S sensing[J]. ACS Applied Nano Materials,2022,5(5):6954-6963. doi: 10.1021/acsanm.2c00940
    [39]
    PATHAK A K, SWARGIARY K, KONGSAWANG N, et al. Recent advances in sensing materials targeting clinical volatile organic compound (VOC) biomarkers: A review[J]. Biosensors,2023,13(1):114. doi: 10.3390/bios13010114
    [40]
    PUNGINSANG M, ZAPPA D, COMINI E, et al. Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires[J]. Applied Surface Science,2022,571:151262. doi: 10.1016/j.apsusc.2021.151262
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (397) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return