Volume 40 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
HUANG Zhengming. Mechanics theories for composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3090-3114. doi: 10.13801/j.cnki.fhclxb.20230117.007
Citation: HUANG Zhengming. Mechanics theories for composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3090-3114. doi: 10.13801/j.cnki.fhclxb.20230117.007

Mechanics theories for composite materials

doi: 10.13801/j.cnki.fhclxb.20230117.007
Funds:  National Natural Science Foundation of China (11832014)
  • Received Date: 2022-07-21
  • Accepted Date: 2022-12-05
  • Rev Recd Date: 2022-11-21
  • Available Online: 2023-01-18
  • Publish Date: 2023-06-15
  • Whereas mechanics theories for isotropic materials have been nearly matured, essentially only the linear elasticity theories for anisotropic composite materials are well established. All of the other mechanical behaviors of the composites are not well understood. Specifically, the failure and strength analysis for the composites still remains to be one of the greatest challenges in solid mechanics. During the last 25 years, in order to advance the development in the mechanics of composite materials, this author has established a series of analytical theories. They include the constitutive and internal stress calculation theory, named Bridging Model, for composites reinforced with continuous or short fibers or particles, the true stress theory for converting a homogenized stress of the matrix in a composite into a true value, the failure criteria for matrix failures established on a physics based principle, the interlaminar matrix stress modification method for predicting interlaminar fracture or delamination of any laminated structure, and the incremental constitutive relation for hyperelastic materials. Based on these theories, almost all of the failure problems of two-phase composites can be efficiently resolved through analytical formulae, as long as void contents in the composites can be neglected. Amongst, Bridging Model has been known world-widely, and more than 250 publications have been made by people other than the author’s group using Bridging Model as a theoretical tool. Furthermore, the others’ publications based on the matrix true stress theory have reached a number of 20, although this theory has been established only recently by the author. A brief summary on the establishment of the author’s theories and how to apply them to resolve challenging problems in composites and their structures is presented in the paper.

     

  • loading
  • [1]
    WANG Y C, HUANG Z M. Analytical micromechanics models for elastoplastic behavior of long fibrous compo-sites: A critical review and comparative study[J]. Materials,2018,11(10):1919. doi: 10.3390/ma11101919
    [2]
    HAHN H T, TSAI S W. Nonlinear elastic behaviour of unidirectional composite laminates[J]. Journal of Compo-site Materials,1973,7:102-110. doi: 10.1177/002199837300700108
    [3]
    SUN C T, CHEN J L. A micromechanical model for plastic behavior of fibrous composites[J]. Composites Science and Technology,1991,40(2):115-129. doi: 10.1016/0266-3538(91)90092-4
    [4]
    MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica,1973,21:571-574. doi: 10.1016/0001-6160(73)90064-3
    [5]
    HILL R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids,1965,13:213-222. doi: 10.1016/0022-5096(65)90010-4
    [6]
    HASHIN Z, ROSEN B W. The elastic moduli of fiber-reinforced materials[J]. Journal of Applied Mechanics,1964,31:223-232. doi: 10.1115/1.3629590
    [7]
    CHRISTENSEN R M, LO K H. Solutions for effective shear properties in three phase sphere and cylinder models[J]. Journal of the Mechanics and Physics of Solids,1979,27:315-330. doi: 10.1016/0022-5096(79)90032-2
    [8]
    HORI M, NEMAT-NASSER S. Double-inclusion model and overall moduli of multi-phase composites[J]. Journal of Engineering Materials and Technology,1994,116:305-309. doi: 10.1115/1.2904292
    [9]
    HU G K, WENG G J. The connections between the double inclusion model and the Ponte Castaneda-Wills, Mori-Tanaka, and Kuster-Toksoz models[J]. Mechanics of Materials,2000,32:495-503. doi: 10.1016/S0167-6636(00)00015-6
    [10]
    ABOUTAJEDDINE A, NEALE K W. The double inclusion model a new formulation and new estimates[J]. Mecha-nics of Materials,2005,37:331-341. doi: 10.1016/j.mechmat.2003.08.016
    [11]
    WANG Y C, HUANG Z M. A new approach to a bridging tensor[J]. Polymer Composites,2015,36:1417-1431. doi: 10.1002/pc.23048
    [12]
    WANG Y C, HUANG Z M. Bridging tensor with an imperfect interface[J]. European Journal of Mechanics-A/Solids,2016,56:73-91. doi: 10.1016/j.euromechsol.2015.10.006
    [13]
    ABOUDI J. Mechanics of composite materials: A unified micromechanical approach[M]. Amsterdam: Elsevier, 2013.
    [14]
    GHORBANI M M, ACHUTHAN A, BEDNARCYK B A, et al. A multi-scale computational model using generalized method of cells (GMC) homogenization for multi-phase single crystal metals[J]. Computational Materials Science,2015,96:44-55. doi: 10.1016/j.commatsci.2014.08.045
    [15]
    CAVALCANTE M A A, PINDERA M J. Generalized finite-volume theory for elastic stress analysis in solid mechanics—Part I: Framework[J]. Journal of Applied Mechanics,2012,79:051006. doi: 10.1115/1.4006805
    [16]
    CAVALCANTE M A A, PINDERA M J. Generalized finite-volume theory for elastic stress analysis in solid mechanics—Part II: Results[J]. Journal of Applied Mechanics,2012,79:051007. doi: 10.1115/1.4006806
    [17]
    DEMIRDŽIĆ I. A fourth-order finite volume method for structural analysis[J]. Applied Mathematical Modelling,2016,40:3104-3114. doi: 10.1016/j.apm.2015.09.098
    [18]
    DOGHRI I, OUAAR A. Homogenization of two-phase elasto-plastic composite materials and structures—Study of tangent operators, cyclic plasticity and numerical algorithms[J]. International Journal of Solids & Structures,2003,40:1681-1712. doi: 10.1016/S0020-7683(03)00013-1
    [19]
    REKIK A, BORNERT M, AUSLENDER F. A critical evaluation of local field statistics predicted by various linearization schemes in nonlinear mean-field homogenization[J]. Mechanics of Materials,2012,54:1-17. doi: 10.1016/j.mechmat.2012.05.011
    [20]
    KANAUN S. An efficient homogenization method for composite materials with elasto-plastic components[J]. International Journal of Engineering Science,2012,57:36-49. doi: 10.1016/j.ijengsci.2012.04.005
    [21]
    GAVAZZI A C, LAGOUDAS D C. On the numerical evaluation of Eshelby's tensor and its application to elastoplastic fibrous composites[J]. Computational Mechanics,1990,7(1):13-19. doi: 10.1007/BF00370053
    [22]
    HUANG Z M. A unified micromechanical model for the mechanical properties of two constituent composite materials, Part I: Elastic behavior[J]. Journal of Thermoplastic Composite Materials,2000,13(4):252-271. doi: 10.1177/089270570001300401
    [23]
    HUANG Z M. A unified micromechanical model for the mechanical properties of two constituent composite materials, Part II: Plastic behavior[J]. Journal of Thermoplastic Composite Materials,2000,13(5):344-362. doi: 10.1106/74AD-GXYK-6NQH-L2AV
    [24]
    HUANG Z M. Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites[J]. International Journal of Solids & Structures,2001,38(22-23):4147-4172. doi: 10.1016/S0020-7683(00)00268-7
    [25]
    HUANG Z M. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model[J]. Composites Part A: Applied Science and Manufacturing,2001,32(2):143-172. doi: 10.1016/S1359-835X(00)00142-1
    [26]
    HUANG Z M, ZHOU Y X. Strength of fibrous composites-Advanced topics in science & technology in China[M]. Hangzhou & Heidelberg: Zhejiang University Press & Springer, 2011.
    [27]
    黄争鸣. 复合材料破坏与强度[M]. 北京: 科学出版社, 2018.

    HUANG Z M. Failures and strengths of composite materials[M]. Beijing: Science Press, 2018(in Chinese).
    [28]
    HUANG Z M, ZHANG C C, XUE Y D. Stiffness prediction of short fiber reinforced composites[J]. International Journal of Mechanical Sciences,2019,161-162:105068. doi: 10.1016/j.ijmecsci.2019.105068
    [29]
    HUANG H B, HUANG Z M. Micromechanical prediction of elastic-plastic behavior of a short fiber or particle reinforced composite[J]. Composites Part A: Applied Science and Manufacturing,2020,134:105889. doi: 10.1016/j.compositesa.2020.105889
    [30]
    RYAN S, WICKLEIN M, MOURITZ A, et al. Theoretical prediction of dynamic composite material properties for hypervelocity impact simulations[J]. International Journal of Impact Engineering,2009,36:899-912. doi: 10.1016/j.ijimpeng.2008.12.012
    [31]
    SHAW A, SRIRAMULA S, GOSLING P D, et al. A critical reliability evaluation of fibre reinforced composite materials based on probabilistic micro and macro-mechanical analysis[J]. Composites Part B: Engineering,2010,41:446-453. doi: 10.1016/j.compositesb.2010.05.005
    [32]
    YOUNES R, HALLAL A, FARDOUN F, et al. Comparative review study on elastic properties modeling for unidirectional composite materials[M]//Composites and Their Properties. Chapter 17, 2012: 391-408.
    [33]
    GHASEMI A R, MOHAMMADI M M, MOHANDES M. The role of carbon nanofibers on thermo mechanical properties of polymer matrix composites and their effect on reduction of residual stresses[J]. Composites Part B: Engi-neering,2015,77:519-527. doi: 10.1016/j.compositesb.2015.03.065
    [34]
    VIGNOLI L L, SAVI M A, PACHECO P M C L, et al. Comparative analysis of micromechanical models for the elastic composite laminae[J]. Composites Part B: Engineering,2019,174:106961. doi: 10.1016/j.compositesb.2019.106961
    [35]
    HUANG Z M. On micromechanics approach to stiffness and strength of unidirectional composites[J]. Journal of Reinforced Plastics and Composites,2019,38(4):167-196.
    [36]
    GUEDES R M. Validation of trace-based approach to elastic properties of multidirectional glass fibre reinforced composites[J]. Composite Structures,2021,257:113170. doi: 10.1016/j.compstruct.2020.113170
    [37]
    HUANG Z M, LIU L. Predicting strength of fibrous laminates under triaxial loads only upon independently measured constituent properties[J]. International Journal of Mechanical Sciences,2014,79:105-129. doi: 10.1016/j.ijmecsci.2013.08.010
    [38]
    HUANG Z M, XIN L M. In situ strengths of matrix in a composite[J]. Acta Mechanica Sinica,2017,33(1):120-131. doi: 10.1007/s10409-016-0611-1
    [39]
    LIU L, HUANG Z M. Stress concentration factor in matrix of a composite reinforced with transversely isotropic fibers[J]. Journal of Composite Materials,2014,48(1):81-98. doi: 10.1177/0021998312469237
    [40]
    HUANG Z M, LIU L. Assessment of composite failure and ultimate strength without experiment on composite[J]. Acta Mechanica Sinica,2014,30(4):569-588. doi: 10.1007/s10409-014-0040-y
    [41]
    HUANG Z M, XIN L M. Stress concentration factor in matrix of a composite subjected to transverse compression[J]. International Journal of Applied Mechanics,2016,8(3):1650034. doi: 10.1142/S1758825116500344
    [42]
    ZHOU Y, HUANG Z M, LIU L. Prediction of interfacial debonding in fiber-reinforced composite laminates[J]. Polymer Composites,2019,40(5):1828-1841. doi: 10.1002/pc.24943
    [43]
    HUANG Z M. Micromechanical failure analysis of unidirectional composites[C]//Failure Analysis, IntechOpen, 2019.
    [44]
    HUANG Z M, GUO W J, HUANG H B, et al. Tensile strength prediction of short fiber reinforced composites[J]. Materials,2021,14(11):2708. doi: 10.3390/ma14112708
    [45]
    郭威静, 黄争鸣. 短纤维复合材料的压缩强度[J]. 固体力学学报, 2022, 43(1):1-15.

    GUO W J, HUANG Z M. Compressive strength of a shrt fiber composite[J]. Chinese Journal of Solid Mechanics,2022,43(1):1-15(in Chinese).
    [46]
    ZHOU Y, HUANG Z M. Prediction of in-plane shear pro-perties of a composite with debonded interface[J]. Applied Composite Materials, 2022, 29: 901-935.
    [47]
    YU M H. Advances in strength theories for materials under complex stress state in the 20th century[J]. Advances in Mechanics,2002,55(3):169-218. doi: 10.1115/1.1472455
    [48]
    ORIFICI A C, HERSZBERG I, THOMSON R S. Review of methodologies for composite material modelling incorporating failure[J]. Composite Structures,2008,86(1-3):194-210. doi: 10.1016/j.compstruct.2008.03.007
    [49]
    TALREJA R. Assessment of the fundamentals of failure theories for composite materials[J]. Composites Science & Technology,2014,105:190-201. doi: 10.1016/j.compscitech.2014.10.014
    [50]
    HUANG Z M, WANG L S, JIANG F, et al. Detection on matrix induced composite failures[J]. Composites Science & Technology,2021,205:108670. doi: 10.1016/j.compscitech.2021.108670
    [51]
    WANG L S, HUANG Z M. On strength prediction of laminated composites[J]. Composites Science & Technology,2022,219:109206. doi: 10.1016/j.compscitech.2021.109206
    [52]
    BAK B L V, SARRADO C, TURON A, et al. Delamination under fatigue loads in composite laminates: A review on the observed phenomenology and computational methods[J]. Applied Mechanics Reviews,2014,66:060803. doi: 10.1115/1.4027647
    [53]
    TABIEI A, ZHANG W. Composite laminate delamination simulation and experiment: A review of recent development[J]. Applied Mechanics Reviews,2018,70:030801. doi: 10.1115/1.4040448
    [54]
    BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics,1962,7(1):55-129.
    [55]
    DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids,1960,8(2):100-104. doi: 10.1016/0022-5096(60)90013-2
    [56]
    RYBICKI E F, KANNINEN M F. A finite element calculation of stress intensity factors by a modified crack closure integral[J]. Engineering Fracture Mechanics,1977,9(4):931-938. doi: 10.1016/0013-7944(77)90013-3
    [57]
    KRUEGER R. Virtual crack closure technique: history, approach, and applications[J]. Applied Mechanics Reviews,2004,57(2):109-143. doi: 10.1115/1.1595677
    [58]
    BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering,1999,45(5):601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [59]
    MOTAMEDI D, MILANI A S. 3D nonlinear XFEM simulation of delamination in unidirectional composite laminates: A sensitivity analysis of modeling parameters[J]. Open Journal of Composite Materials ,2013,3(4):113-126.
    [60]
    HUANG Z M, LI P. Prediction of laminate delamination with no iteration[J]. Engineering Fracture Mechanics,2020,238:107248. doi: 10.1016/j.engfracmech.2020.107248
    [61]
    ZHOU J C, HUANG Z M, XU W. Prediction of laminate delamination from strength failure of interlaminar matrix-layer[J/OL]. Journal of Reinforced Plastics and Compo-sites, 2022-05-01[2022-07-21].
    [62]
    ZHOU J C, HUANG Z M. Predicting delamination of hybrid laminate via stress modification on interlaminar matrix layer[J]. Engineering Fracture Mechanics,2022,264:108333. doi: 10.1016/j.engfracmech.2022.108333
    [63]
    ABAQUS. Theory manual[M]. Version 5.5. Hibbitt, Karlsson & Sorensen, Inc., 1995.
    [64]
    TRELOAR L R G. The physics of rubber elasticity[M]. 3rd ed. Oxford: larendon Press, 1975.
    [65]
    OGDEN R W. Non-linear elastic deformations[M]. New York: Wiley, 1984.
    [66]
    HUANG Z M. A unified micromechanical model for the mechanical properties of two constituent composite materials, Part IV: Rubber-elastic behavior[J]. Journal of Thermoplastic Composite Materials,2000,13(2):119-139. doi: 10.1177/089270570001300203
    [67]
    HUANG Z M, RAMAKRISHNA S, TAY A A O. Modelling of stress-strain behavior of a knitted fabric reinforced elastomer composite[J]. Composites Science & Technology,2000,60(5):671-691. doi: 10.1016/S0266-3538(99)00164-5
    [68]
    SEGURADO J, LLORCA J. A numerical approximation to the elastic properties of sphere-reinforced composites[J]. Journal of the Mechanics & Physics of Solids,2002,50:2107-2121. doi: 10.1016/S0022-5096(02)00021-2
    [69]
    JIANG Z, LIU X, LI G, et al. A new analytical model for three-dimensional elastic stress field distribution in short fibre composite[J]. Materials Science and Engineering: A,2004,366(2):381-396. doi: 10.1016/j.msea.2003.09.055
    [70]
    GADALA R W. Numerical solutions of nonlinear problems of continua—II. Survey of incompressibility constraints and software aspects[J]. Computers & Structures,1986,22:841-855. doi: 10.1016/0045-7949(86)90273-7
    [71]
    SUSSMAN T, BATHE K J. A finite element formulation for nonlinear incompressible elastic and inelastic analysis[J]. Computers & Structures,1987,26:357-409. doi: 10.1016/0045-7949(87)90265-3
    [72]
    PENG S H, CHANG W J. A compressible approach in finite element analysis of rubber-elastic materials[J]. Computers & Structures,1997,62:573-593. doi: 10.1016/S0045-7949(96)00195-2
    [73]
    TRELOAR L R G. Stress-strain data for vulcanised rubber under various types of deformation[J]. Transactions of the Faraday Society,1944,40:59-70. doi: 10.1039/tf9444000059
    [74]
    SODEN P D, HINTON M J, KADDOUR A S. Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates[J]. Composites Science and Technology,1998,58(7):1011-1022. doi: 10.1016/S0266-3538(98)00078-5
    [75]
    ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion and related Problems[J]. Proceedings of the Royal Society of London A,1957,A240:367-396.
    [76]
    CHEN T, DVORAK G J, BENVENISTE Y. Stress fields in composites reinforced by coated cylindrically orthotropic fibers[J]. Mechmater Mechanics of Materials,1990,9:17-32. doi: 10.1016/0167-6636(90)90027-D
    [77]
    ZHOU Y, HUANG Z M. Shear deformation of a composite until failure with a debonded interface[J]. Composite Structures,2020,254:112797. doi: 10.1016/j.compstruct.2020.112797
    [78]
    HUANG Z M, RAMAKRISHNA S. Micromechanical modelling approaches for the stiffness and strength of knitted fabric composites: A review & comparative study[J]. Composites Part A: Applied Science & Manufacturing,2000,31(5):479-501. doi: 10.1016/S1359-835X(99)00083-4
    [79]
    HUANG Z M. Modeling and characterization of bending strength of braided fabric reinforced laminates[J]. Jour-nal of Composite Materials,2002,36(22):2537-2566. doi: 10.1177/002199802761405286
    [80]
    HUANG Z M. Progressive flexural failure analysis of laminated composites with knitted fabric reinforcement[J]. Mechanics of Materials,2004,36(3):239-260. doi: 10.1016/S0167-6636(03)00011-5
    [81]
    HOBBIEBRUNKEN T, HOJO M, ADACHI T, et al. Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments[J]. Composites Part A: Applied Science & Manufacturing,2006,37(12):2248-2256. doi: 10.1016/j.compositesa.2005.12.021
    [82]
    MORTELL D J, TANNER D A, MCCARTHY C T. In-situ SEM study of transverse cracking and delamination in laminated composite materials[J]. Composites Science & Technology,2014,105:118-126. doi: 10.1016/j.compscitech.2014.10.012
    [83]
    KOYANAGI J, OGIHARA S, NAKATANI H, et al. Mechanical properties of fiber/matrix interface in polymer matrix composites[J]. Advanced Composite Materials,2014,23(5-6):551-570. doi: 10.1080/09243046.2014.915125
    [84]
    PUPPO H, EVENSEN H A. Interlaminar shear in laminated composites under generalized plane stress[J]. Jour-nal of Composite Materials,1970,4:204-220. doi: 10.1177/002199837000400206
    [85]
    PETROSSIAN Z, WISNOM M R. Prediction of delamination initiation and growth from discontinuous plies using interface elements[J]. Composites Part A: Applied Science & Manufacturing,1998,29:503-515. doi: 10.1016/S1359-835X(97)00134-6
    [86]
    CHERNIAEV A, TELICHEV I. Meso-scale modeling of hypervelocity impact damage in composite laminates[J]. Composites Part B: Engineering,2015,74:95-103. doi: 10.1016/j.compositesb.2015.01.010
    [87]
    FLETCHER T A, KIM T, DODWELL T J, et al. Resin treatment of free edges to aid certification of through thickness laminate strength[J]. Composite Structures,2016,146:26-33. doi: 10.1016/j.compstruct.2016.02.074
    [88]
    SAITO H, TAKEUCHI H, KIMPARA I. Experimental evaluation of the damage growth restraining in 90 layer of thin-ply CFRP cross-ply laminates[J]. Advanced Composite Materials,2012,21(1):57-66. doi: 10.1163/156855112X629522
    [89]
    PINHO S T, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials,2012,46(19-20):2313-2341. doi: 10.1177/0021998312454478
    [90]
    ZHOU Y X, HUANG Z M. A bridging model prediction of the ultimate strength of composite laminates subjected to triaxial loads[J]. Journal of Composite Materials,2012,46(19-20):2343-2378. doi: 10.1177/0021998312449491
    [91]
    SUN Q, GUO H, ZHOU G, et al. Experimental and computational analysis of failure mechanisms in unidirectional carbon fiber reinforced polymer laminates under longitudinal compression loading[J]. Composite Structures,2018,203:335-348. doi: 10.1016/j.compstruct.2018.06.028
    [92]
    ZHOU Y, HUANG Z M. Failure of fiber-reinforced composite laminates under longitudinal compression[J]. Journal of Composite Materials,2019,53(24):3395-3411. doi: 10.1177/0021998319839217
    [93]
    ZHOU Y, HUANG Z M, WANG J X. Splitting failure of a composite under longitudinal tension[J]. Polymer Composites, 2023, 44: 1116-1134.
    [94]
    YURGARTIS S. Measurement of small angle fiber misalignments in continuous fiber composites[J]. Compo-sites Science & Technology,1987,30(4):279-293. doi: 10.1016/0266-3538(87)90016-9
    [95]
    HUANG Z M. Constitutive relation, deformation, failure and strength of composites reinforced with continuous/short fibers or particles[J]. Composite Structures,2021,262:113279. doi: 10.1016/j.compstruct.2020.113279
    [96]
    PUCK A, SHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science & Technology,1998,58(7):1045-1067. doi: 10.1016/S0266-3538(96)00140-6
    [97]
    PINHO S T, DAVILA C G, CAMNAHO P P, et al. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity[R]. NASA/TM-2005-213530, 2005.
    [98]
    PUCK A, SCHÜRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science & Technology,2002,62(12-13):1633-1662. doi: 10.1016/S0266-3538(01)00208-1
    [99]
    PINHO S T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development[J]. Composites Part A: Applied Science & Manufacturing,2006,37(1):63-73. doi: 10.1016/j.compositesa.2005.04.016
    [100]
    GARNICH M R, AKULA V M K. Review of degradation models for progressive failure analysis of fiber reinforced polymer composites[J]. Applied Mechanics Reviews,2009,62(1):010801. doi: 10.1115/1.3013822
    [101]
    GU J J, HUANG Z M. Assessing delamination initiation of angle-ply laminates from fiber and matrix properties[J]. Journal of Thermoplastic Composite Materials,2019,32(12):1601-1621. doi: 10.1177/0892705718799840
    [102]
    MA Q, HUANG Z M. Failure analysis of laminated structure containing hole through FE approach[J]. Composite Structures, 2023, 306: 116558.
    [103]
    HUANG Z M. Micromechanical life prediction for composite laminates[J]. Mechanics of Materials,2001,33(4):185-199. doi: 10.1016/S0167-6636(00)00056-9
    [104]
    HUANG Z M. Micromechanical modeling of fatigue strength of unidirectional fibrous composites[J]. International Journal of Fatigue,2002,24(6):659-670. doi: 10.1016/S0142-1123(01)00185-2
    [105]
    HUANG Z M. Cyclic response of metal matrix composite laminates subjected to thermo- mechanical fatigue loads[J]. International Journal of Fatigue,2002,24(2-4):463-475. doi: 10.1016/S0142-1123(01)00102-5
    [106]
    HUANG Z M. Fatigue life prediction of a woven fabric composite subjected to biaxial cyclic loads[J]. Compo-sites Part A: Applied Science and Manufacturing,2002,33(2):253-266. doi: 10.1016/S1359-835X(01)00091-4
    [107]
    HUANG Z M, RAMAKRISHNA S, THWE A A. Modeling and characterization of fatigue strength of laminated composites with knitted fabric reinforcement[J]. Journal of Composite Materials,2002,36(15):1781-1801. doi: 10.1177/0021998302036015168
    [108]
    REKTORYS K. Variational methods in mathematics, science, and engineering[M]. Amsterdam: Springer, 1977.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (1763) PDF downloads(371) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return