Volume 40 Issue 5
May  2023
Turn off MathJax
Article Contents
SUN Bei, ZHENG Shenshen, CHI Wenhui, et al. Improved interface performance of all inorganic carbon based CsPbI2Br perovskite solar cells using CuxO[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2818-2826. doi: 10.13801/j.cnki.fhclxb.20221213.002
Citation: SUN Bei, ZHENG Shenshen, CHI Wenhui, et al. Improved interface performance of all inorganic carbon based CsPbI2Br perovskite solar cells using CuxO[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2818-2826. doi: 10.13801/j.cnki.fhclxb.20221213.002

Improved interface performance of all inorganic carbon based CsPbI2Br perovskite solar cells using CuxO

doi: 10.13801/j.cnki.fhclxb.20221213.002
Funds:  Xinjiang University's 2021 Autonomous Region Level Innovation Training Program for College Students (20191003209); National Natural Science Foundation of China (52162035)
  • Received Date: 2022-10-19
  • Accepted Date: 2022-12-01
  • Rev Recd Date: 2022-11-10
  • Available Online: 2022-12-14
  • Publish Date: 2023-05-15
  • All inorganic carbon-based CsPbI2Br perovskite solar cells (C-PSCs) have lower photoelectric conversion efficiency due to poor contact performance and mismatch of energy band between carbon electrode and perovskite laye. In this paper, two kinds of regular octahedral CuxO with different morphologies and structures were prepared by a simple glucose reduction method combined with calcination technology. As inorganic hole transport materials, C-PSCs with the structure of conductive glass (FTO)/SnO2/CsPbI2Br/CuO/C were prepared and the influence of morphologies and structures on the photoelectric performance was studied. The results show that CuxO has good chemical stability and p-type carrier transport characteristics, which can effectively enhance the interface contact between CsPbI2Br and carbon electrode, improve the carrier transport performance, reduce charge recombination, and extend the photoelectron life. The highest photoelectric conversion efficiency of CsPbI2Br based C-PSCs devices based on Cu2O and CuO is 11.62% and 13.22%, respectively, which is 19.5% and 36.0% higher than that of blank devices. In addition, by adding Cu2O and CuO, the long-term stability of the device in the air is also significantly improved. This work has a certain significance for improving the performance of CsPbI2Br based C-PSCs.

     

  • loading
  • [1]
    SUTTON R J, EPERON G E, MIRANDA L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells[J]. Advanced Energy Materials,2016,6(8):1502458. doi: 10.1002/aenm.201502458
    [2]
    CHEN G, LI P, XUE T, et al. Design of low landgap CsPb1-xSnxI2Br perovskite solar cells with excellent phase stability[J]. Small,2021,17(30):2101380. doi: 10.1002/smll.202101380
    [3]
    WANG Y, QUINTANA X, KIM J, et al. Phase segregation in inorganic mixed-halide perovskites: From phenomena to mechanisms[J]. Photonics Research,2020,8(11):402411.
    [4]
    NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters,2013,13(4):1764-1769. doi: 10.1021/nl400349b
    [5]
    ZHOU Y, ZHANG X, LU X, et al. Promoting the hole extraction with Co3O4 nanomaterials for efficient carbon-based CsPbI2Br perovskite solar cells[J]. Solar RRL,2019,3(4):1800315. doi: 10.1002/solr.201800315
    [6]
    BAI D, ZHANG J, JIN Z, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells[J]. ACS Energy Letters, 2018, 3(4): 970-978.
    [7]
    ZHAO Y, XU H, WANG Y, et al. 10.34%-efficient integrated CsPbBr3/bulk-heterojunction solar cells[J]. Journal of Power Sources,2019,440:227151. doi: 10.1016/j.jpowsour.2019.227151
    [8]
    STOUMPOS C C, KANATZIDIS M G, The renaissance of halide perovskites and their evolution as emerging semiconductors[J]. Accounts of Chemical Research, 2015, 48(10): 2791-2802.
    [9]
    CHUNG I, SONG J, IM J, et al. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions[J]. Journal of the American Chemical Society,2012,134(20):8579-8587. doi: 10.1021/ja301539s
    [10]
    DASTIDAR S, EGGER D A, TAN L A, et al. High chloride doping levels stabilize the perovskite phase of cesium lead iodide[J]. Nano Letters,2016,16(6):3563-3570. doi: 10.1021/acs.nanolett.6b00635
    [11]
    KUAN C, SHEN H, LIN C. Low photoactive phase temperature all-inorganic[J]. RSC Advances,2021,11:3264-3271.
    [12]
    DU Y, TIAN Q, CHANG X J, et al. Ionic liquid treatment for highest-efficiency ambient printed stable all-inorganic CsPbI3 perovskite solar cells[J]. Advanced Materials,2022,34(10):2106705.
    [13]
    ZENG Q, ZHANG X, FENG X, et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V[J]. Advanced Materials,2018,30(9):1705393. doi: 10.1002/adma.201705393
    [14]
    FU S, ZHANG W, LI X, et al. Dual-protection strategy for high-efficiency and stable CsPbI2Br inorganic perovskite solar cells[J]. ACS Energy Letters,2020,5(2):676-684. doi: 10.1021/acsenergylett.9b02716
    [15]
    YANG S, ZHAO H, HAN Y, et al. Europium and acetate co-doping strategy for developing stable and efficient CsPbI2Br perovskite solar cells[J]. Small,2019,15(46):1904387. doi: 10.1002/smll.201904387
    [16]
    QIU J, YANG S. Material and interface engineering for high-performance perovskite solar cells: A personal journey and perspective[J]. The Chemical Record, 2020, 20(3): 209-229.
    [17]
    SALIBA M, CORREA-BAENA J P, WOLFF C M, et al. How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures[J]. Chemistry of Materials,2018,30(13):4193-4201.
    [18]
    PATTANASATTAYAVONG P, NDJAWA G O N, ZHAO K, et al. Electric field-induced hole transport in copper(I) thiocyanate (CuSCN) thin-films processed from solution at room temperature[J]. Chemical Communications,2013,49(39):4154-4156. doi: 10.1039/C2CC37065D
    [19]
    BYRANVAND M M, KIM T, SONG S, et al. p-type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis[J]. Advanced Energy Materials,2018,8(5):1702235. doi: 10.1002/aenm.201702235
    [20]
    KIM J H, LIANG P W, WILLIAMS S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Advanced Materials,2015,27(4):695-701. doi: 10.1002/adma.201404189
    [21]
    ZUO C, DING L. Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells[J]. Small,2015,11(41):5528-5532. doi: 10.1002/smll.201501330
    [22]
    LI Q, WANG F, SUN L, et al. Design and synthesis of Cu@CuS yolk-shell structures with enhanced photocatalytic activity[J]. Nano-Micro Letters,2017,9(3):35. doi: 10.1007/s40820-017-0135-7
    [23]
    UMA B, ANANTHARAJU K S, RENUKA L, et al. Controlled synthesis of (CuO-Cu2O)Cu/ZnO multi oxide nanocomposites by facile combustion route: A potential photocatalytic, antimicrobial and anticancer activity[J]. Ceramics International,2021,47(10):14829-14844. doi: 10.1016/j.ceramint.2020.09.223
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (805) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return