Volume 40 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
TIAN Xiaojuan, CHENG Xinyue, WEI Qufu. Rencent research progress and prospects of manganese dioxide based fiber supercapacitor[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3187-3196. doi: 10.13801/j.cnki.fhclxb.20221205.001
Citation: TIAN Xiaojuan, CHENG Xinyue, WEI Qufu. Rencent research progress and prospects of manganese dioxide based fiber supercapacitor[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3187-3196. doi: 10.13801/j.cnki.fhclxb.20221205.001

Rencent research progress and prospects of manganese dioxide based fiber supercapacitor

doi: 10.13801/j.cnki.fhclxb.20221205.001
  • Received Date: 2022-09-09
  • Accepted Date: 2022-11-30
  • Rev Recd Date: 2022-11-09
  • Available Online: 2022-12-05
  • Publish Date: 2023-06-15
  • Manganese dioxide (MnO2) is a promising electrode material for supercapacitors with the advantages of high capacity, environmental protection and low cost. With the continuous development of smart wearable technology, fiber supercapacitors have attracted wide attention due to their flexibility and stitchability. The combination of MnO2 and fiber supercapacitors as an important part of wearable technology has also been constantly researched and expanded. According to the current development of MnO2 based fiber supercapacitor and the demand of wearable energy products, in this paper, the energy storage mechanism of MnO2 in neutral electrolyte is analyzed. In this paper, a series of solutions are proposed to solve the problems of MnO2 based fiber supercapacitors in practical wearable applications, such as the difficulty of continuous production and low practical utilization rate. At the same time, the advantages and disadvantages of various solutions and the synergistic effect of materials in the solutions are deeply analyzed, which provides new ideas for future research directions. Finally, the challenges and future development of MnO2 based fiber supercapacitor are summarized. MnO2 based fiber supercapacitor is expected to make great progress in the future and become a new generation of energy textiles supply system.

     

  • loading
  • [1]
    LI M, LU J, JI X, et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes[J]. Nature Reviews Materials,2020,5(4):276-294. doi: 10.1038/s41578-019-0166-4
    [2]
    GUO S, LIANG S, ZHANG B, et al. Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery[J]. ACS Nano, 2019, 13: 13456-13464.
    [3]
    HOU J H, CAO C B, IDREES F. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS Nano,2015,9(3):2556-2564. doi: 10.1021/nn506394r
    [4]
    林峰, 杨升元. Ca-Alginate/MXene纤维状柔性电极材料的制备及其电化学性能研究[J]. 山东化工, 2021, 50(4):5-7. doi: 10.3969/j.issn.1008-021X.2021.04.002

    LIN F, YANG S Y. Preparation and electrochemical properties of Ca-alginate/MXene fiber flexible electrode materials[J]. Shandong Chemical Industry,2021,50(4):5-7(in Chinese). doi: 10.3969/j.issn.1008-021X.2021.04.002
    [5]
    CANDELARIA S L, SHAO Y, ZHOU W, et al. Nanostructured carbon for energy storage and conversion[J]. Nano Energy,2012,1(2):195-220. doi: 10.1016/j.nanoen.2011.11.006
    [6]
    FARAJI S, ANI F N. The development supercapacitor from activated carbon by electroless plating—A review[J]. Renewable and Sustainable Energy Reviews,2015,42:823-34. doi: 10.1016/j.rser.2014.10.068
    [7]
    MIRABEDINI A, LU Z, MOSTAFAVIAN S, et al. Triaxial carbon nanotube/conducting polymer wet-Spun fibers supercapacitors for wearable electronics[J]. Nanomaterials (Basel), 2020, 11(1): 11010003.
    [8]
    JIN K, ZHOU M, ZHAO H, et al. Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage[J]. Electrochimica Acta,2019,295:668-676. doi: 10.1016/j.electacta.2018.10.182
    [9]
    LIMA R M A P, DE OLIVEIRA M C A, DE OLIVEIRA H P. Wearable supercapacitors based on graphene nanoplatelets/carbon nanotubes/polypyrrole composites on cotton yarns electrodes[J]. SN Applied Sciences, 2019, 1(4): 325.
    [10]
    QI J, CHEN Y, LI Q, et al. Hierarchical NiCo layered double hydroxide on reduced graphene oxide-coated commercial conductive textile for flexible high-performance asymmetric supercapacitors[J]. Journal of Power Sources,2020,445:227342.
    [11]
    孙悦, 范杰, 王亮, 等. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12):131-138.

    SUN Y, FAN J, WANG L, et al. Research progress of wearable technology in textile and apparels[J]. Journal of Textile Science and Technolog,2018,39(12):131-138(in Chinese).
    [12]
    王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12):157-165.

    WANG J L, LIU Y, JING Y Y, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Science and Technology,2020,41(12):157-165(in Chinese).
    [13]
    CAO Z, LI R, XU P, et al. Highly dispersed RuO2-biomass carbon composite made by immobilization of ruthenium and dissolution of coconut meat with octyl ammonium salicylate ionic liquid for high performance flexible supercapacitor[J]. Journal of Colloid and Interface Science,2022,606(1):424-433.
    [14]
    AHIRRAO D J, WILSON H M, JHA N. TiO2-nanoflowers as flexible electrode for high performance supercapacitor[J]. Applied Surface Science,2019,491:765-778. doi: 10.1016/j.apsusc.2019.05.076
    [15]
    HONG X, LI S, WANG R, et al. Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor[J]. Journal of Alloys and Compounds,2019,775:15-21. doi: 10.1016/j.jallcom.2018.10.099
    [16]
    SUN G, REN H, SHI Z, et al. V2O5/vertically-aligned carbon nanotubes as negative electrode for asymmetric supercapacitor in neutral aqueous electrolyte[J]. Journal of Colloid and Interface Science,2021,588:847-856. doi: 10.1016/j.jcis.2020.11.126
    [17]
    RABANI I, YOO J, KIM H S, et al. Highly dispersive Co3O4 nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor[J]. Nanoscale,2021,13(1):355-370. doi: 10.1039/D0NR06982E
    [18]
    RAUT S D, SHINDE N M, GHULE B G, et al. Room-temperature solution-processed sharp-edged nanoshapes of molybdenum oxide for supercapacitor and electrocatalysis applications[J]. Chemical Engineering Journal,2022,433:133627.
    [19]
    SAMUEL E, JOSHI B, KIM Y I, et al. ZnO/MnOx nanoflowers for high-performance supercapacitor electrodes[J]. ACS Sustainable Chemistry & Engineering,2020,8(9):3697-3708.
    [20]
    GUO W, YU C, LI S, et al. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives[J]. Nano Energy,2019,57:459-472. doi: 10.1016/j.nanoen.2018.12.015
    [21]
    YUE T, SHEN B, GAO P. Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review[J]. Renewable and Sustainable Energy Reviews,2022,158:112131.
    [22]
    LEE H Y, GOODENOUGH J B. Supercapacitor behavior with KCl electrolyte[J]. Brief Communication,1999,144:220-223.
    [23]
    LI N, ZHU X, ZHANG C, et al. Controllable synthesis of different microstructured MnO2 by a facile hydrothermal method for supercapacitors[J]. Journal of Alloys and Compounds,2017,692:26-33. doi: 10.1016/j.jallcom.2016.08.321
    [24]
    YAN J, SUMBOJA A, WANG X, et al. Insights on the fundamental capacitive behavior: A case study of MnO2[J]. Small,2014,10(17):3568-3578. doi: 10.1002/smll.201303553
    [25]
    PEI Z, ZHU M, HUANG Y, et al. Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in MnOx/TiO2 nanotube composite electrodes[J]. Nano Energy,2016,20:254-263. doi: 10.1016/j.nanoen.2015.12.025
    [26]
    MA W, CHEN S, YANG S, et al. Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors[J]. Journal of Power Sources,2016,306:481-488. doi: 10.1016/j.jpowsour.2015.12.063
    [27]
    MA W, CHEN S, YANG S, et al. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density[J]. Carbon,2017,113:151-158. doi: 10.1016/j.carbon.2016.11.051
    [28]
    LI G X, HOU P X, LUAN J, et al. A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors[J]. Carbon,2018,140:634-643. doi: 10.1016/j.carbon.2018.09.011
    [29]
    GARCIA T J, ROBERTS A J, SLADE R C T, et al. One-step wet-spinning process of CB/CNT/MnO2 nanotubes hybrid flexible fibres as electrodes for wearable supercapacitors[J]. Electrochimica Acta,2019,296:481-490. doi: 10.1016/j.electacta.2018.10.201
    [30]
    ROGALSKI J J, BASTIAANSEN C W M, PEIJS T. Rotary jet spinning review-A potential high yield future for polymer nanofibers[J]. Nanocomposites,2017,3(4):97-121. doi: 10.1080/20550324.2017.1393919
    [31]
    SAHA S, SADHUKHAN P, ROY C S, et al. Rotary-Jet spin assisted fabrication of MnO2 microfiber for supercapacitor electrode application[J]. Materials Letters,2020,277:128342.
    [32]
    ZHANG J, YANG X, HE Y, et al. δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor[J]. Journal of Materials Chemistry A,2016,4(23):9088-9096. doi: 10.1039/C6TA02989B
    [33]
    LI H, LIANG J, LI H, et al. Activated carbon fibers with manganese dioxide coating for flexible fiber supercapacitors with high capacitive performance[J]. Journal of Energy Chemistry,2019,31:95-100. doi: 10.1016/j.jechem.2018.05.008
    [34]
    LIU Q, YANG J, LUO X, et al. Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor[J]. Ceramics International,2020,46(8):11874-11881. doi: 10.1016/j.ceramint.2020.01.222
    [35]
    CAO J, SAFDAR M, WANG Z, et al. High performance flexible supercapacitor electrodes based on Te nanowire arrays[J]. Journal of Materials Chemistry A, 2013, 1(34): 10024-10029.
    [36]
    WEN Y, QIN T, WANG Z, et al. Self-supported binder-free carbon fibers/MnO2 electrodes derived from disposable bamboo chopsticks for high-performance supercapacitors[J]. Journal of Alloys and Compounds,2017,699:126-135. doi: 10.1016/j.jallcom.2016.12.330
    [37]
    NOH J, YOON C M, KIM Y K, et al. High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3[J]. Carbon,2017,116:470-478. doi: 10.1016/j.carbon.2017.02.033
    [38]
    GONG W, FUGETSU B, WANG Z, et al. Thicker carbon-nanotube/manganese-oxide hybridized nanostructures as electrodes for the creation of fiber-shaped high-energy-density supercapacitors[J]. Carbon,2019,154:169-177. doi: 10.1016/j.carbon.2019.08.004
    [39]
    CHEN Q, MENG Y, HU C, et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor[J]. Journal of Power Sources,2014,247:32-39. doi: 10.1016/j.jpowsour.2013.08.045
    [40]
    LU Z, CHAO Y, GE Y, et al. High-performance hybrid carbon nanotube fibers for wearable energy storage[J]. Nanoscale,2017,9(16):5063-5071. doi: 10.1039/C7NR00408G
    [41]
    CHOI C, KIM J H, SIM H J, et al. Microscopically buckled and macroscopically coiled fibers for ultra-stretchable supercapacitors[J]. Advanced Energy Materials, 2016, 7(6): 1602021.
    [42]
    KIM J H, CHOI C, LEE J M, et al. Ag/MnO2 composite sheath-core structured yarn supercapacitors[J]. Scientific Reports,2018,8(1):13309. doi: 10.1038/s41598-018-31611-2
    [43]
    PARK T, JANG Y, PARK J W, et al. Quasi-solid-state highly stretchable circular knitted MnO2@CNT supercapacitor[J]. RSC Advances,2020,10(24):14007-14012. doi: 10.1039/D0RA01398F
    [44]
    LU X, SHEN C, ZHANG Z, et al. Core-shell composite fibers for high-performance flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2018,10(4):4041-4049. doi: 10.1021/acsami.7b12997
    [45]
    SAMANTA P, GHOSH S, SAMANTA P, et al. Alteration in capacitive performance of Sn-decorated MnO2 with different crystal structure: An investigation towards the development of high-performance supercapacitor electrode materials[J]. Journal of Energy Storage,2020,28:101281.
    [46]
    XU M, CAI Y, WANG T, et al. Two-dimensional Mg-doped MnO2@carbon cloth nanosheets for high performance typical flexible solid supercapacitor[J]. Journal of Alloys and Compounds,2021,887(1):160243-160250.
    [47]
    CHI H Z, ZHU H, GAO L. Boron-doped MnO2/carbon fiber composite electrode for supercapacitor[J]. Journal of Alloys and Compounds,2015,645:199-205. doi: 10.1016/j.jallcom.2015.05.014
    [48]
    CHI H Z, YIN S, CEN D, et al. The capacitive behaviours of MnO2/carbon fiber composite electrode prepared in the presence of sodium tetraborate[J]. Journal of Alloys and Compounds,2016,678:42-50. doi: 10.1016/j.jallcom.2016.03.292
    [49]
    ZONG Q, ZHANG Q, MEI X, et al. Facile synthesis of Na-doped MnO2 nanosheets on carbon nanotube fibers for ultrahigh-energy-density all-solid-state wearable asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces,2018,10(43):37233-37241.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (723) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return