Volume 40 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
ZHOU Jiancheng, CHEN Guohua, CHEN Danqing. Poly(N-isopropylacrylamide)-based nanofiber membranes with temperature-sensitive and excellent mechanical properties[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3441-3448. doi: 10.13801/j.cnki.fhclxb.20220825.001
Citation: ZHOU Jiancheng, CHEN Guohua, CHEN Danqing. Poly(N-isopropylacrylamide)-based nanofiber membranes with temperature-sensitive and excellent mechanical properties[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3441-3448. doi: 10.13801/j.cnki.fhclxb.20220825.001

Poly(N-isopropylacrylamide)-based nanofiber membranes with temperature-sensitive and excellent mechanical properties

doi: 10.13801/j.cnki.fhclxb.20220825.001
Funds:  Fujian Province Science and Technology Planning Project (2018H0019; 2017H2001)
  • Received Date: 2022-07-05
  • Accepted Date: 2022-08-11
  • Rev Recd Date: 2022-08-08
  • Available Online: 2022-08-25
  • Publish Date: 2023-06-15
  • Poly(N-isopropylacrylamide) (PNIPAM), which contains both hydrophilic amide and hydrophobic isopropyl groups, is one of the most widely used temperature-sensitive polymers, and its related products have promising applications in the fields of tissue engineering, medical care and smart fabrics. In this study, PNIPAM was successfully synthesized by free radical polymerization, and PNIPAM was prepared into temperature-sensitive nano-membranes by electrospinning technology innovatively. Then, we tried to copolymerize polyethylene glycol methyl ether (mPEG) and PNIPAM in different proportions to investigate the performance of PNIPAM-co-mPEG. The results showed that the temperature-sensitive nano-membranes exhibited significant hydrophilic and hydrophobic transitions with temperature changes. Compared with the pure PNIPAM temperature-sensitive nano-membranes, the mechanical properties of the PNIPAM-co-mPEG were significantly improved, and it could maintain the inherent fiber morphology under the condition of large water absorption and swelling. The residual weight rate and the initial decomposition temperature of PNIPAM-co-mPEG are increased by 321% and 240%, respectively. The water contact angle of PNIPAM-co-mPEG at room temperature decreases by more than 16°, which improves the hydrophilicity to a certain extent. Moreover, the low critical solution temperature of PNIPAM-co-mPEG is increased from 31.7℃ to 43.6℃, the temperature-sensitive range is expanded.

     

  • loading
  • [1]
    HELLWEG T, DEWHURST C D, EIMER W, et al. PNIPAM-co-polystyrene core-shell microgels: Structure, swelling behavior, and crystallization[J]. Langmuir,2004,20(11):4330-4335. doi: 10.1021/la0354786
    [2]
    FEIL H, BAE Y H, FEIJEN J, et al. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers[J]. Macromolecules,1993,26(10):2496-2500. doi: 10.1021/ma00062a016
    [3]
    TANG L, WANG L, YANG X, et al. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications[J]. Progress in Materials Science,2020,115:100702.
    [4]
    CHUANG W J, CHIU W Y. Thermo-responsive nanofibers prepared from poly(N-isopropylacrylamide-co-N-methylol acrylamide)[J]. Polymer,2012,53(14):2829-2838. doi: 10.1016/j.polymer.2012.05.014
    [5]
    HAQ M A, SU Y L, WANG D J. Mechanical properties of PNIPAM based hydrogels: A review[J]. Materials Science & Engineering C-Materials for Biological Applications,2018,70:842-855.
    [6]
    SUN G, ZHANG X Z, CHU C C. Effect of the molecular weight of polyethylene glycol (PEG) on the properties of chitosan-PEG-poly(N-isopropylacrylamide) hydrogels[J]. Journal of Materials Science Materials in Medicine,2008,19(8):2865-2872. doi: 10.1007/s10856-008-3410-9
    [7]
    SUN G M, ZHANG X Z, CHU C C. Formulation and characterization of chitosan-based hydrogel films having both temperature and pH sensitivity[J]. Journal of Materials Science-Materials in Medicine,2008,18(8):1563-1577.
    [8]
    DEITZEL J M, KLEINMEYER J D, HIRVONEN J K, et al. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer,2001,42(19):8163-8170. doi: 10.1016/S0032-3861(01)00336-6
    [9]
    GUO Y J, WANG X Y, SHEN Y, et al. Research progress, models and simulation of electrospinning technology: A review[J]. Journal of Materials Science,2021,57(1):58-104.
    [10]
    THENMOZHI S, DHARMARAJ N, KADIRVELU K, et al. Electrospun nanofibers: New generation materials for advanced applications[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2017,217:36-48.
    [11]
    YANG Z, CHENG Q, JIANG Q, et al. Thermo-sensitive nanoparticles for triggered release of siRNA[J]. Journal of Biomaterials Science—Polymer Edition,2015,26(4):264-276. doi: 10.1080/09205063.2014.997559
    [12]
    AHMAD S, AHMAD M, MANZOOR K, et al. A review on latest innovations in natural gums based hydrogels: Preparations & applications[J]. International Journal of Biological Macromolecules,2019,136:870-890. doi: 10.1016/j.ijbiomac.2019.06.113
    [13]
    WANG H, YAN H, ZHU Y J, et al. Synthesis and characterization of thermo-responsive supramolecular diblock copolymers[J]. Journal of Polymer Research,2016,23(4):73-80. doi: 10.1007/s10965-016-0949-x
    [14]
    ALEXANDER A, AJAZUDDIN, KHAN J, et al. Polyethylene glycol (PEG)-poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications[J]. European Journal of Pharmaceutics and Biopharmaceutics,2014,88(3):575-585. doi: 10.1016/j.ejpb.2014.07.005
    [15]
    ABANDANSARI H S, AGHAGHAFARI E, NABID M R, et al. Preparation of injectable and thermoresponsive hydrogel based on penta-block copolymer with improved sol stabi-lity and mechanical properties[J]. Polymer,2013,54(4):1329-1340. doi: 10.1016/j.polymer.2013.01.004
    [16]
    CHAI Y H, LONG Y P, DONG X Z, et al. Improved functional recovery of rat transected spinal cord by peptide-grafted PNIPAM based hydrogel[J]. Colloids and Surfaces B: Biointerfaces,2022,210:112220. doi: 10.1016/j.colsurfb.2021.112220
    [17]
    ZHU D Y, CHEN X J, HONG Z P, et al. Repeatedly Intrinsic self-healing of millimeter-scale wounds in polymer through rapid volume expansion aided host-guest interaction[J]. ACS Applied Materials & Interfaces,2020,12(20):22534-22542.
    [18]
    田黎明, 杨丹丹, 聂康明, 等. 多壁碳纳米管/PCL-b-PNIPAM复合材料的制备[J]. 复合材料学报, 2016, 33(12):2706-2711. doi: 10.13801/j.cnki.fhclxb.20160125.001

    TIAN Liming, YANG Dandan, NIE Kangming, et al. Preparation of multi-walled carbon nanotubes/PCL-b-PNIPAM composites[J]. Acta Materiae Compositae Sinica,2016,33(12):2706-2711(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160125.001
    [19]
    WANG Y L, SONG S J, CHU X H, et al. A new temperature-responsive controlled-release pesticide formulation-poly(N-isopropylacrylamide) modified graphene oxide as the nanocarrier for lambda-cyhalothrin delivery and their application in pesticide transportation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,612:125987. doi: 10.1016/j.colsurfa.2020.125987
    [20]
    李妍, 郭彦峰, 付俊, 等. 冷链物流中二元有机相变储能材料的制备与热物性能[J]. 复合材料学报, 2022, 39(6):2679-2689.

    LI Yan, GUO Yanfeng, FU Jun, et al. Preparation and thermophysical performance of organic phase change energy storage materials in cold chain transportation[J]. Acta Materiae Compositae Sinica,2022,39(6):2679-2689(in Chinese).
    [21]
    徐朝阳, 李健昱, 石小梅, 等. 聚乙二醇改性纳米纤维素/聚乙烯醇复合水凝胶的制备及性能[J]. 复合材料学报, 2017, 34(4):708-713. doi: 10.13801/j.cnki.fhclxb.20160819.001

    XU Zhaoyang, LI Jianyu, SHI Xiaomei, et al. Preparation and properties of polyethylene glycol-modified cellulose nanofibers/polyvinyl alcohol composite hydrogel[J]. Acta Materiae Compositae Sinica,2017,34(4):708-713(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160819.001
    [22]
    XU D L, ZHENG J F, ZHANG X, et al. Mechanistic insights of a thermoresponsive interface for fouling control of thin-film composite nanofiltration membranes[J]. Environmental Science & Technology,2022,56(3):1927-1937.
    [23]
    ZHAO Y Y, WEN J P, SUN H G, et al. Thermo-responsive separation membrane with smart anti-fouling and self-cleaning properties[J]. Chemical Engineering Research and Design,2020,156:333-342. doi: 10.1016/j.cherd.2020.02.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (396) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return