Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
TANG Xiaoning, LIU Junnan, GONG Haifeng, et al. Energy storage mechanism and electrochemical performance of graphene/manganese dioxide composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3898-3905. doi: 10.13801/j.cnki.fhclxb.20220120.006
Citation: TANG Xiaoning, LIU Junnan, GONG Haifeng, et al. Energy storage mechanism and electrochemical performance of graphene/manganese dioxide composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3898-3905. doi: 10.13801/j.cnki.fhclxb.20220120.006

Energy storage mechanism and electrochemical performance of graphene/manganese dioxide composites

doi: 10.13801/j.cnki.fhclxb.20220120.006
  • Received Date: 2021-11-19
  • Accepted Date: 2022-01-07
  • Rev Recd Date: 2022-01-05
  • Available Online: 2022-01-20
  • Publish Date: 2022-08-31
  • Supercapacitors have been attracted tremendous attention due to their high power density and long cycle life, etc. The electrode material is the main factor affecting electrochemical properties. Graphene/manganese dioxide composites (RGO/MnO2) were prepared using one pot hydrothermal method with graphene oxide (GO) as carbon source, as well as H2O2 and KMnO4 as MnO2 precursors. It was found that sphere-like MnO2 distributes on the graphene sheets by the microstructure tests. The energy storage mechanism of the composite was discussed. It displays that the reaction is the surface dominant process. The surface capacitance accounts for 86.2% of the total capacitance at 5 mV·s−1, While it can account for 97.3% at 200 mV·s−1. In order to assemble a device with high energy density, this work fabricated an asymmetric supercapacitor (ASC, RGO/MnO2//RGO) using the RGO/MnO2 as the positive electrode and RGO as the negative electrode, respectively, which exhibits high energy density (72.8 W·h·kg−1 at 100 W·kg−1).

     

  • loading
  • [1]
    CHEN P C, SHEN G Z, SHI Y, et al. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes[J]. ACS Nano,2010,4(8):4403-4411. doi: 10.1021/nn100856y
    [2]
    LANG J W, KONG L B, WU W J, et al. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors[J]. Chemical Communications,2008,35:4213-4215.
    [3]
    CAO L, LU M, LI H L. Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance[J]. Journal of the Electrochemical Society,2005,152(5):A871-A875. doi: 10.1149/1.1883354
    [4]
    CHOU S L, WANG J Z, CHEW S, et al. Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors[J]. Electrochemistry Communications,2008,10(11):1724-1727. doi: 10.1016/j.elecom.2008.08.051
    [5]
    WU Z S, REN W C, WANG D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors[J]. ACS Nano,2010,4(10):5835-5842. doi: 10.1021/nn101754k
    [6]
    LIU Y C, MIAO X F, FANG J H, et al. Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces,2016,8(8):5251-5260.
    [7]
    ZHAO X, ZHANG L L, MURALI S, et al. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors[J]. ACS Nano,2012,6(6):5404-5412. doi: 10.1021/nn3012916
    [8]
    YANG S H, SONG X F, ZHANG P, et al. Facile synthesis of nitrogen-doped graphene-ultrathin MnO2 sheet compo-sites and their electrochemical performances[J]. ACS Applied Materials & Interfaces,2013,5(8):3317-3322.
    [9]
    SHENG L Z, JIANG L L, WEI T, et al. High volumetric energy density asymmetric supercapacitors based on well-balanced graphene and graphene-MnO2 electrodes with densely stacked architectures[J]. Small,2016,12(37):5217-5227. doi: 10.1002/smll.201601722
    [10]
    ZHAO Y F, RAN W, HE J, et al. High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability[J]. Small,2015,11(11):1310-1319. doi: 10.1002/smll.201401922
    [11]
    TANG X N, LIU C Z, CHEN X R, et al. Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes[J]. Carbon,2019,146:147-154. doi: 10.1016/j.carbon.2019.01.096
    [12]
    QIAN H S, HAN F M, ZHANG B, et al. Non-catalytic CVD preparation of carbon spheres with a specific size[J]. Carbon,2004,42(4):761-766. doi: 10.1016/j.carbon.2004.01.004
    [13]
    XU Y X, SHENG K X, LI C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4(7):4324-4330. doi: 10.1021/nn101187z
    [14]
    LIU Y, CAI X Y, LUO B F, et al. MnO2 decorated on carbon sphere intercalated graphene film for high-performance supercapacitor electrodes[J]. Carbon, 2016, 107: 426-432.
    [15]
    LI Y Y, LI Z S, SHEN P K. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors[J]. Advanced Materials,2013,25(17):2474-2480. doi: 10.1002/adma.201205332
    [16]
    WANG J J, WANG J G, LIU H Y, et al. A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries[J]. Advanced Functional Materials,2020,31(7):2007397.
    [17]
    KOU Z K, GUO B B, ZHAO Y F, et al. Molybdenum carbide-derived chlorine-doped ordered mesoporous carbon with few-layered graphene walls for energy storage applications[J]. ACS Applied Materials & Interface,2017,9(4):3702-3712.
    [18]
    WANG L L, GUO C, ZHU Y C, et al. A FeCl2-graphite sandwich composite with Cl doping in graphite layers: A new anode material for high-performance Li-ion batteries[J]. Nanoscale,2014,6(23):14174-14179. doi: 10.1039/C4NR05070C
    [19]
    JORIO A. Raman spectroscopy in graphene-based systems: Prototypes for nanoscience and nanometrology[J]. Isrn Nanotechnology,2012,2012(3):234216.
    [20]
    WEI X H, LIU L, ZHANG J X, et al. Mechanical, electrical, thermal performances and structure characteristics of flexible graphite sheets[J]. Journal of Materials Science,2010,45:2449-2455. doi: 10.1007/s10853-010-4216-y
    [21]
    YAO Y J, XU C, YU S M, et al. Facile synthesis of Mn3O4-reduced graphene oxide hybrids for catalytic decompo-sition of aqueous organics[J]. Industrial & Engineering Chemistry Research,2013,52(10):3637-3645.
    [22]
    JIA Henan, CAI Yifei, LIN Jinghuang, et al. Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors[J]. Advanced Science, 2018, 5(5): 1700887.
    [23]
    YAN J, FAN Z J, WEI T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon,2010,48:3825-3833. doi: 10.1016/j.carbon.2010.06.047
    [24]
    PANG M J, LONG G H, JIANG S, et al. Rapid synthesis of graphene/amorphous α-MnO2 composite with enhanced electrochemical performance for electrochemical capacitor[J]. Materials Science and Engineering: B,2015,194:41-47. doi: 10.1016/j.mseb.2014.12.028
    [25]
    LIU J L, WANG J, XU C H, et al. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design[J]. Advanced Science,2018,5(1):1700322. doi: 10.1002/advs.201700322
    [26]
    ARDIZZONE S, FREGONARA G, TRASATTI S. “Inner” and “outer” active surface of RuO2 electrodes[J]. Electrochimica Acta,1990,35(1):263-267. doi: 10.1016/0013-4686(90)85068-X
    [27]
    HOANG V C, NGUYEN L H, GOMES V G. High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite[J]. Journal of Electroanalytical Chemistry,2019,832:87-96. doi: 10.1016/j.jelechem.2018.10.050
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (853) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return