Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
LIU Qing, XU Yiwen, ZHAO Guodong, et al. Biochar supported green nano-iron particles to remove U(VI) from water[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5934-5945. doi: 10.13801/j.cnki.fhclxb.20211129.004
Citation: LIU Qing, XU Yiwen, ZHAO Guodong, et al. Biochar supported green nano-iron particles to remove U(VI) from water[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5934-5945. doi: 10.13801/j.cnki.fhclxb.20211129.004

Biochar supported green nano-iron particles to remove U(VI) from water

doi: 10.13801/j.cnki.fhclxb.20211129.004
  • Received Date: 2021-10-25
  • Accepted Date: 2021-11-19
  • Rev Recd Date: 2021-11-18
  • Available Online: 2021-11-30
  • Publish Date: 2022-12-01
  • Uranium mining and hydrometallurgy produce a large amount of uranium wastewater, which causes pollution to the surrounding ecological environment. Therefore, efficient and green treatment is an important basis to guarantee the sustainable development and ecological security of nuclear industry. In this study, sunflower leaves were used as raw materials for green synthesis of biochar-loaded nano-iron particles (GN-FeNPs/BC) that used to remove U(VI) in water. Sunflower leaves were used to prepare plant extract, and then the residue was pyrolyzed to prepare biochar. Finally, ferrous sulfate heptahydrate solution, biochar and plant extract were mixed to successfully prepare a green nano-iron composite material. The effects of biochar carbonization temperature, iron-to-carbon ratio, pH value, temperature, time and U(VI) concentration on uranium removal were explored. When the pH is 5 at 298 K, the maximum adsorption capacity is 96.43 mg·g−1. The kinetics and thermodynamics are studied. The results show that the pseudo-second order model and Langmuir model fit well. The thermodynamic constants indicate that the adsorption of U(VI) by GN-FeNPs/BC is a spontaneous endothermic process. XPS analysis shows that the removal mechanism includes adsorption and reduction.

     

  • loading
  • [1]
    LIU B, PENG T J, SUN H J, et al. Release behavior of uranium in uranium mill tailings under environmental conditions[J]. Journal of Environmental Radioactivity,2017,171:160-168. doi: 10.1016/j.jenvrad.2017.02.016
    [2]
    DING L, TAN W F, XIE S B, et al. Uranium adsorption and subsequent re-oxidation under aerobic conditions by Leifsonia sp-Coated biochar as green trapping agent[J]. Envi-ronmental Pollution,2018,242:778-787. doi: 10.1016/j.envpol.2018.07.050
    [3]
    LIU B, PENG T J, SUN H J, et al. Mobility and risk assessment of uranium and associated heavy metals in uranium mill Tailings[J]. Journal of Nanoscience and Nanotechnology,2017,17(9):6746-6753. doi: 10.1166/jnn.2017.14449
    [4]
    ZHANG Q, ZHAO D L, FENG S J, et al. Synthesis of nanoscale zero-valent iron loaded chitosan for synergistically enhanced removal of U(VI) based on adsorption and reduction[J]. Journal of Colloid and Interface Science,2019,552:735-743. doi: 10.1016/j.jcis.2019.05.109
    [5]
    JIN J, LI S W, PENG X Q, et al. HNO3 modified biochars for uranium(VI) removal from aqueous solution[J]. Bioresource Technology,2018,256:247-253. doi: 10.1016/j.biortech.2018.02.022
    [6]
    KLUEPFEL L, KEILUWEIT M, KLEBER M, et al. Redox pro-perties of plant biomass-derived black carbon (Biochar)[J]. Environmental Science & Technology,2014,48(10):5601-5611.
    [7]
    WANG S S, ZHAO M Y, ZHOU M, et al. Biochar-supported nZVI(nZVI/BC) for contaminant removal from soil and water: A critical review[J]. Journal of Hazardous Materials,2019,373:820-834. doi: 10.1016/j.jhazmat.2019.03.080
    [8]
    姜记威, 张诗轩, 曾文炉, 等. 生物炭基材料在抗生素废水处理中的研究进展[J]. 化工进展, 2021, 40(S2):389-401.

    JIANG Jiwei, ZHANG Shixuan, ZENG Wenlu, et al. Research progress on biochar-based materials for the treatment of antibiotic wastewater[J]. Chemical Industry and Engineering Progress,2021,40(S2):389-401(in Chinese).
    [9]
    DIAO Z H, DU J J, JIANG D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism[J]. Science of the Total Environment,2018,642:505-515. doi: 10.1016/j.scitotenv.2018.06.093
    [10]
    YANG F, ZHANG S, SUN Y, et al. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal[J]. Bioresource Technology,2018,265:490-497. doi: 10.1016/j.biortech.2018.06.029
    [11]
    CHEN L, YANG J Y, WANG D. Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L. ) enhanced with biodegradable chelating agents[J]. Journal of Cleaner Production,2020,263:121491. doi: 10.1016/j.jclepro.2020.121491
    [12]
    CHEN L, HU W F, LONG C, et al. Exogenous plant growth regulator alleviate the adverse effects of U and Cd stress in sunflower (Helianthus annuus L. ) and improve the efficacy of U and Cd remediation[J]. Chemosphere,2021,262:127809. doi: 10.1016/j.chemosphere.2020.127809
    [13]
    CHEN A W, SHANG C, SHAO J H, et al. The application of iron-based technologies in uranium remediation: A review[J]. Science of the Total Environment,2017,575:1291-1306. doi: 10.1016/j.scitotenv.2016.09.211
    [14]
    TSAREV S, COLLINS R N, ILTON E S, et al. The short-term reduction of uranium by nanoscale zero-valent iron(nZVI): Role of oxide shell, reduction mechanism and the formation of U(V)-carbonate phases[J]. Environmental Science: Nano,2017,4(6):1304-1313. doi: 10.1039/C7EN00024C
    [15]
    LI J, ZHANG L B, PENG J H, et al. Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field[J]. Nuclear Engineering and Technology,2016,48(3):744-750. doi: 10.1016/j.net.2016.01.021
    [16]
    WANG Y N, O'CONNOR D, SHEN Z T, et al. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors[J]. Journal of Cleaner Production,2019,226:540-549. doi: 10.1016/j.jclepro.2019.04.128
    [17]
    MACHADO S, PINTO S L, GROSSO J P, et al. Green production of zero-valent iron nanoparticles using tree leaf extracts[J]. Science of the Total Environment,2013,445:1-8.
    [18]
    CHEN R, YI G H, WU S S, et al. Controlled green synthesis of Au-Pt bimetallic nanoparticles using chlorogenic acid[J]. Research on Chemical Intermediates,2021,47(10):4051-4066. doi: 10.1007/s11164-021-04513-8
    [19]
    LIU C M, DIAO Z H, HUO W Y, et al. Simultaneous removal of Cu2+ and bisphenol A by a novel biochar-supported zero valent iron from aqueous solution: Synthesis, reactivity and mechanism[J]. Environmental Pollution,2018,239:698-705. doi: 10.1016/j.envpol.2018.04.084
    [20]
    MANDAL S, PU S Y, HE L L, et al. Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil[J]. Environmental Pollution,2020,259:113851. doi: 10.1016/j.envpol.2019.113851
    [21]
    WEI Y F, FANG Z Q, ZHENG L C, et al. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal[J]. Applied Surface Science,2017,399:322-329. doi: 10.1016/j.apsusc.2016.12.090
    [22]
    ZHANG Q, WANG Y Y, WANG Z, et al. Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2021,852:156993. doi: 10.1016/j.jallcom.2020.156993
    [23]
    WANG G H, LIU J S, WANG X G, et al. Adsorption of uranium(VI) from aqueous solution onto cross-linked chitosan[J]. Journal of Hazardous Materials,2009,168(2-3):1053-1058. doi: 10.1016/j.jhazmat.2009.02.157
    [24]
    司子彦, 谢水波, 朱奥琦, 等. 蒙脱土/Fe3O4/腐殖酸复合材料对U(Ⅵ)的作用机制[J]. 材料工程, 2021, 49(3):158-166.

    SI Ziyan, XIE Shuibo, ZHU Aoqi, et al. Action mechanism of montmorillonit/Fe3O4/humic acid composite on U(Ⅵ)[J]. Journal of Materials Engineering,2021,49(3):158-166(in Chinese).
    [25]
    SUN Y B, YANG S T, SHENG G D, et al. Comparison of U(VI) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina[J]. Separation and Purification Technology,2011,83:196-203. doi: 10.1016/j.seppur.2011.09.050
    [26]
    ELTAWEIL A S, MOHAMED H A, ABD EL-MONAEM E M, et al. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms[J]. Advanced Powder Technology,2020,31(3):1253-1263. doi: 10.1016/j.apt.2020.01.005
    [27]
    HO Y, MCKAY G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J]. Water Research,2000,34(3):735-742. doi: 10.1016/S0043-1354(99)00232-8
    [28]
    荣丽杉, 夏麟, 周书葵, 等. UiO-66/壳聚糖的制备及其对U(VI)的吸附机制[J]. 复合材料学报, 2022, 39(10): 4879-4888.

    RONG Lishan, XIA Lin, ZHOU Shukui, et al. Preparation of UiO-66/chitosan and its adsorption mechanism of U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4879-4888(in Chinese).
    [29]
    FEBRIANTO J, KOSASIH A N, SUNARSO J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies[J]. Journal of Hazardous Materials,2009,162(2-3):616-645. doi: 10.1016/j.jhazmat.2008.06.042
    [30]
    AHMED W, MEHMOOD S, NUNEZ-DELGADO A, et al. Utilization of Citrullus lanatus L. seeds to synthesize a novel MnFe2O4-biochar adsorbent for the removal of U(VI) from wastewater: Insights and comparison between modified and raw biochar[J]. Science of the Total Environment,2021,771:144955. doi: 10.1016/j.scitotenv.2021.144955
    [31]
    杨金辉, 胡世琴, 杨斌, 等. 氨化烟末生物碳吸附剂的制备及对Cr(VI)的吸附行为[J].复合材料学报, 2022, 39(1): 222-231.

    YANG Jinhui, HU Shiqin, YANG Bin, et al. Preparation of bio-carbon adsorbent for ammoniated tobacco dust and its adsorption behavior for Cr(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 222-231(in Chinese).
    [32]
    FAN Q H, HAO L M, WANG C L, et al. The adsorption behavior of U(VI) on granite[J]. Environmental Science-Processes & Impacts,2014,16(3):534-541.
    [33]
    HU H, ZHANG X, WANG T, et al. Bamboo (acidosasa longiligula) shoot shell biochar: Its potential application to isolation of uranium(VI) from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry,2018,316(1):349-362. doi: 10.1007/s10967-018-5731-6
    [34]
    SAWADA K, HIRABAYASHI D, ENOKIDA Y. Kinetics of chlorination of uranium-antimony composite oxide for uranium removal from waste catalyst used for acrylonitrile synthesis[J]. Journal of Nuclear Science and Technology,2019,56(4):317-321. doi: 10.1080/00223131.2019.1580622
    [35]
    ZHANG Q, ZHAO D, DING Y, et al. Synthesis of Fe-Ni/graphene oxide composite and its highly efficient removal of uranium(VI) from aqueous solution[J]. Journal of Cleaner Production,2019,230:1305-1315. doi: 10.1016/j.jclepro.2019.05.193
    [36]
    GUO D, SONG X, ZHANG L, et al. Recovery of uranium(VI) from aqueous solutions by the polyethyleneimine-functionalized reduced graphene oxide/molybdenum disulfide composition aerogels[J]. Journal of the Taiwan Institute of Chemical Engineers,2020,106:198-205. doi: 10.1016/j.jtice.2019.09.029
    [37]
    LI J, ZHANG X, LIU M, et al. Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward Chromate under aerobic conditions[J]. Environmental Science & Technology,2018,52(5):2988-2997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1091) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return