Volume 39 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
XIN Yajun, SUN Shuai, YANG Shuo, et al. Experiment and numerical simulation of out-plane shear performance of aluminum honeycomb sandwich panel[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6119-6129. doi: 10.13801/j.cnki.fhclxb.20211125.002
Citation: XIN Yajun, SUN Shuai, YANG Shuo, et al. Experiment and numerical simulation of out-plane shear performance of aluminum honeycomb sandwich panel[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 6119-6129. doi: 10.13801/j.cnki.fhclxb.20211125.002

Experiment and numerical simulation of out-plane shear performance of aluminum honeycomb sandwich panel

doi: 10.13801/j.cnki.fhclxb.20211125.002
  • Received Date: 2021-10-11
  • Accepted Date: 2021-11-18
  • Rev Recd Date: 2021-11-13
  • Available Online: 2021-11-26
  • Publish Date: 2022-12-01
  • The out-plane shear behavior and mechanical properties of aluminum honeycomb sandwich panel were studied by experiment and numerical simulation. The failure modes were discussed, and the typical load-displacement curves were obtained. The effects of face sheet thickness, cell size and core height on the pick load and energy absorption capacity of the sandwich panel were analyzed. The results show that the out-plane shear failure process of aluminum honeycomb sandwich panel goes through four stages: Elastic-plastic deformation, upper sheet damage failure, core layer density and lower sheet damage failure, and presents two failure modes: Integral failure and phased failure. The type of failure mode is mainly determined by the relative relationship between face sheet thickness and cell size. Increasing face sheet thickness or cell size will transform the failure mode from integral failure to phased failure, and the energy absorption capacity of phased failure mode is higher than integral failure mode. The shear strength and energy absorption capacity increase with the increase of face sheet thickness, but decrease with the increase of cell size. The shear strength is slightly affected by the core height, but the energy absorption capacity of sandwich panel increases with the increase of core height. The simulation results are in good agreement with the experimental results, which fully verifies the reliability of the finite element model.

     

  • loading
  • [1]
    卢天健, 何德平, 陈常青, 等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展, 2006, 36(4):517-535. doi: 10.3321/j.issn:1000-0992.2006.04.004

    LU Tianjian, HE Deping, CHEN Changqing, et al. The multi-functionality of ultra-light porous metals and their applicatons[J]. Advances in Mechanics,2006,36(4):517-535(in Chinese). doi: 10.3321/j.issn:1000-0992.2006.04.004
    [2]
    WANG Z. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering,2019,166:731-741. doi: 10.1016/j.compositesb.2019.02.011
    [3]
    WANG F, WANG Y H, LIU J Y, et al. Theoretical and experimental study on carbon/epoxy facings-aluminum honeycomb sandwich structure using lock-in thermography[J]. Measurement,2018,126:110-119. doi: 10.1016/j.measurement.2018.05.055
    [4]
    SUN G Y, ZHANG J T, LI S Q, et al. Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading[J]. Thin-Walled Structures,2019,142:499-515. doi: 10.1016/j.tws.2019.04.029
    [5]
    程小全, 寇长河, 郦正能. 复合材料夹芯板低速冲击后弯曲及横向静压特性[J]. 复合材料学报, 2000, 17(2):114-118. doi: 10.3321/j.issn:1000-3851.2000.02.026

    CHENG Xiaoquan, KOU Changhe, LI Zhengneng. Behavior of bending after low velocity impact and quasi-static transverse indentation of composite honeycomb core sand-wich panels[J]. Acta Materiae Compositae Sinica,2000,17(2):114-118(in Chinese). doi: 10.3321/j.issn:1000-3851.2000.02.026
    [6]
    张旭红, 王志华, 赵隆茂. 爆炸载荷作用下铝蜂窝夹芯板的动力响应[J]. 爆炸与冲击, 2009, 29(4):356-360. doi: 10.3321/j.issn:1001-1455.2009.04.004

    ZHANG Xuhong, WANG Zhihua, ZHAO Longmao. Dynamic responses of sandwich plates with aluminum honeycomb cores subjected to blast loading[J]. Explosion and Shock Waves,2009,29(4):356-360(in Chinese). doi: 10.3321/j.issn:1001-1455.2009.04.004
    [7]
    姜立标, 习成, 李金水, 等. 铝蜂窝夹层材料在客车噪声控制的应用研究[J]. 汽车零部件, 2014, 3:29-32. doi: 10.3969/j.issn.1674-1986.2014.10.002

    JIANG Libiao, XI Cheng, LI Jinshui, et al. Researches on aluminum honeycomb sandwich material for noise control in coches[J]. Automobile Parts,2014,3:29-32(in Chinese). doi: 10.3969/j.issn.1674-1986.2014.10.002
    [8]
    张超, 张军. 碳纤维铝蜂窝夹芯复合结构隔声性能研究[J]. 振动与冲击, 2020, 39(12):265-271.

    ZHANG Chao, ZHANG Jun. A study on sound insulation for sandwich structures with carbon fiber panel and aluminum honeycomb core[J]. Journal of Vibration and Shock,2020,39(12):265-271(in Chinese).
    [9]
    丁延卫, 王晓耕, 张立华, 等. 碳纤维/铝蜂窝太阳翼基板热变形分析[J]. 航天器工程, 2009, 18(4):44-48. doi: 10.3969/j.issn.1673-8748.2009.04.008

    DING Yanwei, WANG Xiaogeng, ZHANG Lihua, et al. Analysis of thermal elastic deformation for solar array substrate with CFRP/aluminum honeycomb sandwich[J]. Spacecraft Engineering,2009,18(4):44-48(in Chinese). doi: 10.3969/j.issn.1673-8748.2009.04.008
    [10]
    程文礼, 袁超, 邱启艳, 等. 航空用蜂窝夹层结构及制造工艺[J]. 航空制造技术, 2015, 7:94-98.

    CHENG Wenli, YUAN Chao, QIU Qiyan, et al. Honeycomb sandwich structure and manufacturing process in aviation industy[J]. Aeronautical Manufacturing Technology,2015,7:94-98(in Chinese).
    [11]
    姜立标, 刘永浩, 刘金龙, 等. 铝蜂窝复合材料客车底板性能研究及应用[J]. 汽车零部件, 2014, 2:26-29. doi: 10.3969/j.issn.1674-1986.2014.11.014

    JIANG Libiao, LIU Yonghao, LIU Jinlong, et al. Perfor-mance research and application of aluminium honeycomb composite material used in bus-platform[J]. Automobile Parts,2014,2:26-29(in Chinese). doi: 10.3969/j.issn.1674-1986.2014.11.014
    [12]
    许士华, 王俊, 王洪乙. 新型船用内装材料-铝蜂窝夹层复合板[J]. 舰船工程研究, 2005, 4:32-34.

    XU Shihua, WANG Jun, WANG Hongyi. A new type of interior decoration material-aluminum honeycomb sandwich panel[J]. Chinese Journal of Ship Research,2005,4:32-34(in Chinese).
    [13]
    FAN H L, MENG F H, YANG W. Sandwich panels with Kagome lattice cores reinforced by carbon fibers[J]. Composite Structures,2007,81(4):533-539. doi: 10.1016/j.compstruct.2006.09.011
    [14]
    CAI L C, ZHANG D Y, ZHOU S H, et al. Investigation on mechanical properties and equivalent model of aluminum honeycomb sandwich panels[J]. Russian Microelectronics,2018,27(12):6585-6596.
    [15]
    石姗姗, 陈秉智, 陈浩然, 等. Kevlar短纤维增韧碳纤维/铝蜂窝夹芯板三点弯曲与面内压缩性能[J]. 复合材料学报, 2017, 34(9):1953-1959.

    SHI Shanshan, CHEN Bingzhi, CHEN Haoran, et al. Three-point bending and in-plane compression properties of carbon-fiber/aluminum-honeycomb sandwich panels with short-Kevlar-fiber toughening[J]. Acta Materiae Compositae Sinica,2017,34(9):1953-1959(in Chinese).
    [16]
    泮世东, 吴林志, 孙雨果. 含面芯界面缺陷的蜂窝夹芯板侧向压缩破坏模式[J]. 复合材料学报, 2007, 24(6):121-127. doi: 10.3321/j.issn:1000-3851.2007.06.021

    PAN Shidong, WU Linzhi, SUN Yuguo. End compression failure of honeycomb sandwich panels containing interfacial debonding[J]. Acta Materiae Compositae Sinica,2007,24(6):121-127(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.06.021
    [17]
    辛亚军, 肖博, 刘小蛮, 等. 蜂窝铝夹芯板准静态局压试验研究[J]. 机械强度, 2017, 39(3):518-526.

    XIN Yajun, XIAO Bo, LIU Xiaoman, et al. Quasi-static localized indentation tests on aluminum honeycomb sandwich panel[J]. Journal of Mechanical Strength,2017,39(3):518-526(in Chinese).
    [18]
    XIN Y J, YAN H M, YANG S, et al. Experimental study on the indentation of epoxy resin-aluminum honeycomb[J]. Mechanics of Advanced Materials and Structures,2021,28(9):904-918. doi: 10.1080/15376494.2019.1605009
    [19]
    LIN C, FATT M. Perforation of composite plates and sandwich panels under quasi-static and projectile loading[J]. Journal of Composite Materials,2006,40(20):1801-1840. doi: 10.1177/0021998306060173
    [20]
    齐佳旗, 段玥晨, 铁瑛, 等. 结构参数对CFRP蒙皮-铝蜂窝夹层板低速冲击性能的影响[J]. 复合材料学报, 2020, 37(6):1352-1363.

    QI Jiaqi, DUAN Yuechen, TIE Ying, et al. Effect of structural parameters on the low-velocity impact performance of aluminum honeycomb sandwich plate with CFRP face sheets[J]. Acta Materiae Compositae Sinica,2020,37(6):1352-1363(in Chinese).
    [21]
    辛亚军, 张立伟, 刘小蛮, 等. 蜂窝铝夹芯板动态冲击试验研究[J]. 机械强度, 2018, 40(4):802-809.

    XIN Yajun, ZHANG Liwei, LIU Xiaoman, et al. Impact test on aluminum honeycomb sandwich panels[J]. Journal of Mechanical Strength,2018,40(4):802-809(in Chinese).
    [22]
    ARSLAN K, GUNES R. Experimental damage evaluation of honeycomb sandwich structures with Al/B4C FGM face plates under high velocity impact loads[J]. Composite Structures,2018,202(10):304-312.
    [23]
    俎政, 原天宇, 汤双双, 等. 蜂窝夹芯板多次低速冲击及冲击后剩余强度[J]. 科学技术与工程, 2019, 19(28):101-109. doi: 10.3969/j.issn.1671-1815.2019.28.014

    ZU Zheng, YUAN Tianyu, TANG Shuangshuang, et al. Repeated low velocity impacts on honeycomb sandwich panels and residual strength after impacts[J]. Science Technology and Engineering,2019,19(28):101-109(in Chinese). doi: 10.3969/j.issn.1671-1815.2019.28.014
    [24]
    张雨, 李应刚, 沈云龙, 等. 蜂窝金属夹芯板重复冲击动态响应研究[J]. 振动与冲击, 2021, 40(4):255-260.

    ZHENG Yu, LI Yinggang, SHEN Yunlong, et al. Dynamic responses of honeycomb sandwich panels under repeated impacts[J]. Journal of Vibration and Shock,2021,40(4):255-260(in Chinese).
    [25]
    HOU B, WANG Y, SUN T F, et al. On the quasi-static and impact responses of aluminum honeycomb under combined shear-compression[J]. Impact Engineering,2019,131(9):190-199.
    [26]
    ZHOU Q, MAYER R R. Characterization of aluminum honey-comb material failure in large deformation compression, shear, and tearing[J]. Journal of Engineering Materials and Technology,2002,124(4):412-420. doi: 10.1115/1.1491575
    [27]
    闫慧明. 环氧树脂-蜂窝铝夹芯板面内压缩、剪切试验研究与数值模拟[D]. 秦皇岛: 燕山大学, 2020.

    YAN Huiming. Experimental research and numerical simulation of in-plane compression and shear of epoxy-honeycomb aluminum sandwich panel[D]. Qinhuangdao: Yanshan University, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (1369) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return