Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
WANG Yiren, ZHOU Tong, WANG Luzhen, et al. Preparation of flexible wood-based electronic films and its application for sensors[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4057-4064. doi: 10.13801/j.cnki.fhclxb.20211027.001
Citation: WANG Yiren, ZHOU Tong, WANG Luzhen, et al. Preparation of flexible wood-based electronic films and its application for sensors[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4057-4064. doi: 10.13801/j.cnki.fhclxb.20211027.001

Preparation of flexible wood-based electronic films and its application for sensors

doi: 10.13801/j.cnki.fhclxb.20211027.001
  • Received Date: 2021-08-02
  • Accepted Date: 2021-10-18
  • Rev Recd Date: 2021-10-16
  • Available Online: 2021-10-27
  • Publish Date: 2022-08-31
  • In order to expand multi-function and high-value application of wood, balsa wood was used as raw material. Firstly, they were performed with chemical treatment to remove the matrix including lignin and hemicellulose, followed with drying. The acetylated balsa wood frame (AWF) was prepared by acetylation modification. Afterwards, by vacuum impregnation, polydimethylsiloxane (PDMS) elastomer was introduced into balsa wood frame (WF) and AWF respectively, in order to fabricate composite film materials (PDMS/WF and PDMS/AWF). The effects of acetylation modification on morphology, mechanical properties, chemical composition and surface hydrophilicity of composite films were systematically studied. The results show that after acetylation, the interface between balsa wood frame and PDMS is more compact, and the pores between PDMS and white wood are smaller. At the same time, the tensile strength of PDMS/AWF composite film (along the fiber growth direction, L-direction) is around 176 MPa, and the toughness is about 6.58 MJ/m3, which is nearly twice as high as that of PDMS/WF compo-site film. Furthermore, the prepared PDMS/AWF wood-based composite film was used as a flexible substrate to assemble a flexible sensor. As a result, it shows stable and repeatable changes for relative resistance values under various deformations. Altogether, it has great potential to be applied in the research fields of smart furniture, elastic substrates of smart response devices, flexible electronic components and wearable devices.

     

  • loading
  • [1]
    李坚, 孙庆丰, 王成毓, 等. 木质仿生智能科学引论[M]. 北京: 科学出版社, 2018.

    LI Jian, SUN Qingfeng, WANG Chengyu, et al. Introduction to the science of wood bionic intelligence[M]. Beijing: Science Press, 2018(in Chinese).
    [2]
    王成毓, 孙淼. 仿生人工木材的研究进展[J]. 林业工程学报, 2022, 7(3):1-10.

    WANG Chengyu, SUN Miao. Research of bioinspired artificial wood[J]. Journal of Forestry Engineering,2022, 7(3):1-10(in Chinese).
    [3]
    吴义强. 木材科学与技术研究新进展[J]. 中南林业科技大学学报, 2021, 41(1):1-28.

    WU Yiqiang. Newly advances in wood science and technology[J]. Journal of Central South University of Forestry & Technology,2021,41(1):1-28(in Chinese).
    [4]
    吴燕, 韩岩, 黄楠, 等. 脱木素工艺对透明木材性能的影响[J]. 林业工程学报, 2019, 4(6):98-104.

    WU Yan, HAN Yan, HUANG Nan, et al. Effect of delignification process on properties of transparent wood[J]. Journal of Forestry Engineering,2019,4(6):98-104(in Chinese).
    [5]
    ROWELL R M. Handbook of wood chemistry and wood composites[M]. Boca Raton: CRC press, 2005: 380-420.
    [6]
    FU Q, CHEN Y, SORIEUL M. Wood-based flexible electro-nics[J]. ACS Nano,2020,14(3):3528-3538. doi: 10.1021/acsnano.9b09817
    [7]
    AJDARY R, TARDY B L, MATTOS B D, et al. Plant nanomaterials and inspiration from nature: Water interactions and hierarchically structured hydrogels[J]. Advanced Materials,2020,33(28):2001085.
    [8]
    FU Q, TU K, GOLDHAHN C, et al. Luminescent and hydrophobic wood films as optical lighting materials[J]. ACS Nano,2020,14(10):13775-13783. doi: 10.1021/acsnano.0c06110
    [9]
    王成毓, 杨照林, 王鑫, 等. 木材功能化研究新进展[J]. 林业工程学报, 2019, 4(3):10-18.

    WANG Chengyu, YANG Zhaolin, WANG Xin, et al. New research progress of functional wood[J]. Journal of Forestry Engineering,2019,4(3):10-18(in Chinese).
    [10]
    卿彦, 易佳楠, 吴义强, 等. 纳米纤维素储能研究进展[J]. 林业科学, 2018, 54(3):134-143.

    QING Yan, YI Jianan, WU Yiqiang, et al. Advances in application of biomass nanocellulose to green-energy storage[J]. Scientia Silvae Sinicae,2018,54(3):134-143(in Chinese).
    [11]
    WAN Z, CHEN C, MENG T, et al. Multifunctional wet-spun filaments through robust nanocellulose networks wrapping to single-walled carbon nanotubes[J]. ACS Applied Materials & Interfaces,2019,11(45):42808-42817.
    [12]
    WU K, ZHANG Y, GONG F, et al. Highly thermo-conduc-tive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables[J]. Chemical Engineering Journal, 2020, 421(2): 127764.
    [13]
    LARRAZA I, VADILLO J, CALVO-CORREAS T, et al. Cellulose and graphene based polyurethane nanocomposites for FDM 3D printing: Filament properties and printability[J]. Polymers,2021,13(5):839. doi: 10.3390/polym13050839
    [14]
    ZHAN Y, NAN B, LIU Y, et al. Multifunctional cellulose-based fireproof thermal conductive nanocomposite films assembled by in-situ grown SiO2 nanoparticle onto MXene[J]. Chemical Engineering Journal,2021,421:129733. doi: 10.1016/j.cej.2021.129733
    [15]
    SAEDI S, SHOKRI M, KIM J T, et al. Semi-transparent regenerated cellulose/ZnONP nanocomposite film as a potential antimicrobial food packaging material[J]. Jour-nal of Food Engineering,2021,307:110665. doi: 10.1016/j.jfoodeng.2021.110665
    [16]
    MOHAMMADALINEIHAD S, ALMASI H, ESMAIILI M. Physical and release properties of poly(lactic acid)/nanosilver-decorated cellulose, chitosan and lignocellulose nanofiber composite films[J]. Materials Chemistry and Physics,2021,268:124719. doi: 10.1016/j.matchemphys.2021.124719
    [17]
    周可可, 唐亚丽, 卢立新, 等. 氧化纳米纤维素增强再生纤维素全纤维素复合薄膜的制备及性能[J]. 复合材料学报, 2020, 37(7):1657-1666.

    ZHOU Keke, TANG Yali, LU Lixin, et al. Preparation and properties of all-cellulose composite films with oxidized cellulose nanofibrils reinforcing regenerated cellulose[J]. Acta Materiae Compositae Sinica,2020,37(7):1657-1666(in Chinese).
    [18]
    ZHANG E, YANG J, LIU W. Cellulose-based hydrogels with controllable electrical and mechanical properties[J]. Zeitschrift Für Physikalische Chemie,2018,232(9-11):1707-1716.
    [19]
    CHEN C, LI D, ABE K, et al. Formation of high strength double-network gels from cellulose nanofiber/polyacrylamide via NaOH gelation treatment[J]. Cellulose,2018,25(9):5089-5097. doi: 10.1007/s10570-018-1938-5
    [20]
    WU Y, SUN S, GENG A, et al. Using TEMPO-oxidized-nanocellulose stabilized carbon nanotubes to make pigskin hydrogel conductive as flexible sensor and supercapacitor electrode: Inspired from a Chinese cuisine[J]. Composites Science and Technology,2020,196:108226. doi: 10.1016/j.compscitech.2020.108226
    [21]
    CHEN C, WANG Y, WU Q, et al. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors[J]. Chemical Engineering Journal,2020,400:125876. doi: 10.1016/j.cej.2020.125876
    [22]
    WANG X, FANG J, ZHU W, et al. Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive minera-lized wood hydrogel composites for bone repair[J]. Advanced Functional Materials,2021,31(20):2010068. doi: 10.1002/adfm.202010068
    [23]
    CHEN G, LI T, CHEN C, et al. Scalable wood hydrogel membrane with nanoscale channels[J]. ACS Nano,2021,15(7):11244-11252. doi: 10.1021/acsnano.0c10117
    [24]
    ZHU M, JIA C, WANG Y, et al. Isotropic paper directly from anisotropic wood: Top-down green transparent substrate toward biodegradable electronics[J]. ACS Applied Mater-ials & Interfaces,2018,10(34):28566-28571.
    [25]
    MI R, CHEN C, KEPLINGER T, et al. Scalable aesthetic transparent wood for energy efficient buildings[J]. Nature Communications,2020,11(1):1-9. doi: 10.1038/s41467-019-13993-7
    [26]
    LI Y, YANG X, FU Q, et al. Towards centimeter thick transparent wood through interface manipulation[J]. Journal of Materials Chemistry A,2018,6(3):1094-1101. doi: 10.1039/C7TA09973H
    [27]
    WANG X, SHAN S, SHI S Q, et al. Optically transparent bamboo with high strength and low thermal conductivity[J]. ACS Applied Materials & Interfaces,2020,13(1):1662-1669.
    [28]
    MI R, LI T, DALGO D, et al. A clear, strong, and thermally insulated transparent wood for energy efficient windows[J]. Advanced Functional Materials,2020,30(1):1907511. doi: 10.1002/adfm.201907511
    [29]
    秦建鲲, 白天, 邵亚丽, 等. 不同树种多层透明木材的制备与表征[J]. 北京林业大学学报, 2018, 40(7):113-120.

    QIN Jiankun, BAI Tian, SHAO Yali, et al. Fabrication and characterization of multilayer transparent wood of diffe-rent species[J]. Journal of Beijing Forestry University,2018,40(7):113-120(in Chinese).
    [30]
    GAN W, CHEN C, GIROUX M, et al. Conductive wood for high-performance structural electromagnetic interference shielding[J]. Chemistry of Materials,2020,32(12):5280-5289. doi: 10.1021/acs.chemmater.0c01507
    [31]
    CHEN G, LI T, CHEN C, et al. A highly conductive cationic wood membrane[J]. Advanced Functional Materials,2019,29(44):1902772. doi: 10.1002/adfm.201902772
    [32]
    CHENG Z, WEI Y, LIU C, et al. Lightweight and construable magnetic wood for electromagnetic interference shielding[J]. Advanced Engineering Materials,2020,22(10):2000257. doi: 10.1002/adem.202000257
    [33]
    GAN W, GAO L, XIAO S, et al. Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template[J]. Journal of Materials Science,2017,52(6):3321-3329. doi: 10.1007/s10853-016-0619-8
    [34]
    NIE K, WANG Z, ZHOU H, et al. Improved dielectricity of anisotropic wood slices and bioinspired micropatterned film electrodes for highly sensitive flexible electronic sensors[J]. Journal of Materials Chemistry C,2020,8(45):16113-16120. doi: 10.1039/D0TC03729J
    [35]
    FOSTER K E O, HESS K M, MIYAKE G M, et al. Optical pro-perties and mechanical modeling of acetylated transparent wood composite laminates[J]. Materials,2019,12(14):2256. doi: 10.3390/ma12142256
    [36]
    ZHANG H, WU X, QIN Z, et al. Dual physically cross-linked carboxymethyl cellulose-based hydrogel with high stretchability and toughness as sensitive strain sensors[J]. Cellulose,2020,27(17):9975-9989. doi: 10.1007/s10570-020-03463-5
    [37]
    陈楚楚, 王怡仁, 卜香婷, 等. 聚二甲基硅氧烷/纳米纤维素复合膜的制备及性能分析[J]. 纤维素科学与技术, 2018, 26(4):39-44, 51.

    CHEN Chuchu, WANG Yiren, BU Xiangting, et al. Preparation and characterization of polydimethylsiloane/cellulose nanofiber nanocomposite[J]. Journal of Cellulose Science and Technology,2018,26(4):39-44, 51(in Chinese).
    [38]
    CHEN C, BU X, FENG Q, et al. Cellulose nanofiber/carbon nanotube conductive nano-network as a reinforcement template for polydimethylsiloxane nanocomposite[J]. Polymers,2018,10(9):1000. doi: 10.3390/polym10091000
    [39]
    GAITAN-ALVAREZ J, BERROCAL A, MANTANIS G I, et al. Acetylation of tropical hardwood species from forest plantations in Costa Rica: An FTIR spectroscopic analysis[J]. Journal of Wood Science,2020,66(1):1-10. doi: 10.1186/s10086-020-1848-7
    [40]
    SUN B, CHAI Y, LIU J, et al. Acetylation of plantation softwood without catalysts or solvents[J]. Wood Research,2019,64(5):799-810.
    [41]
    SULYM I, ZDARTA J, CIESIELCZYK F, et al. Pristine and poly(dimethylsiloxane) modified multi-walled carbon nanotubes as supports for lipase immobilization[J]. Materials,2021,14(11):2874. doi: 10.3390/ma14112874
    [42]
    魏阿静, 李运涛, 马忠雷. 柔性可拉伸硅橡胶@多壁碳纳米管/硅橡胶可穿戴应变传感纤维[J]. 复合材料学报, 2020, 37(8):2045-2054.

    WEI Ajing, LI Yuntao, MA Zhonglei. Flexible stretchable and highly sensitive silicone rubber@multiwalled carbon nanotubes/silicone rubber wearable strain sensing fibers[J]. Acta Materiae Compositae Sinica,2020,37(8):2045-2054(in Chinese).
    [43]
    张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(5):1024-1032.

    ZHANG Mingyan, YANG Zhenhua, WU Zijian, et al. Preparation and properties of a novel sandwich structure polydimethylsiloxane/polyvinylidene fluoride-Ag nanowires/polydimethylsiloxane flexible strain sensor[J]. Acta Materiae Compositae Sinica,2020,37(5):1024-1032(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1114) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return