Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
WEI Huige, PENG Zifang, CHEN Anli, et al. Synthesis and electrochemical energy storage performance of biomass-based porous hierarchical activated carbon-polyaniline composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4028-4036. doi: 10.13801/j.cnki.fhclxb.20210928.005
Citation: WEI Huige, PENG Zifang, CHEN Anli, et al. Synthesis and electrochemical energy storage performance of biomass-based porous hierarchical activated carbon-polyaniline composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4028-4036. doi: 10.13801/j.cnki.fhclxb.20210928.005

Synthesis and electrochemical energy storage performance of biomass-based porous hierarchical activated carbon-polyaniline composites

doi: 10.13801/j.cnki.fhclxb.20210928.005
  • Received Date: 2021-07-23
  • Accepted Date: 2021-09-16
  • Rev Recd Date: 2021-09-09
  • Available Online: 2021-09-29
  • Publish Date: 2022-08-31
  • To fabricate high performance energy storage devices with low cost, this work proposed a facile method to prepare biomass-based hierarchical activated carbon-polyaniline composites (HAC-PANI) via an in-situ chemi-cal polymerization method, and their applications in supercapacitors (SCs) and zinc-ion hybrid supercapacitors (ZHSCs) were investigated. The results show that hierarchical porous structure and high specific area of HAC provide growth sites for PANI and effectively reduce the agglomeration of PANI and meanwhile promote the transport of electrolyte ions, and degrease the charge transfer resistance. When the mass ratio of HAC to aniline monomer (An) is 1∶2, uniform PANI nanoparticles were observed growing on HAC, and the resulting composite (HAC-2PANI) electrode exhibits the optimum performance. Under the three-electrode system, the mass specific capacitance of HAC-2PANI reaches as high as 415.6 F·g−1(@1 A·g−1). The HAC-2PANI based all-solid supercapacitor (s-HAC-PANI-SC) displays a specific capacitance of 217.4 F·g−1(@1 A·g−1), an energy density of 26.5 W·h·kg−1 and a power density of 1875.0 W·kg−1. The zinc-ion hybrid supercapacitor (HAC-PANI-ZHSC) constructed with HAC-2PANI as the cathode and Zn foil as the anode exhibits a high specific capacity of 91.8 mA·h·g−1(@0.2 A·g−1), a remarkable energy density of 64.3 W·h·kg−1, and a power density of 140.0 W·kg−1, indicating promising potentials of biomass-based carbon composites for high performance and low cost electrochemical energy storage devices.

     

  • loading
  • [1]
    ZHAO Y, HE J, DAI M, et al. Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices[J]. Journal of Energy Chemistry,2020,45:67-73. doi: 10.1016/j.jechem.2019.09.027
    [2]
    WANG J G, LIU H, ZHANG X, et al. Green synthesis of hierarchically porous carbon nanotubes as advanced materials for high-efficient energy storage[J]. Small,2018,14(13):1703950. doi: 10.1002/smll.201703950
    [3]
    RAN F, XU X, PAN D, et al. Ultrathin 2D metal-organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device[J]. Nanomicro Letters,2020,12(1):46.
    [4]
    ZHANG J, FENG H, QIN Q, et al. Interior design of three-dimensional CuO ordered architectures with enhanced performance for supercapacitors[J]. Journal of Materials Chemistry A,2016,4(17):6357-6367. doi: 10.1039/C6TA00397D
    [5]
    韦会鸽, 李桂星, 万同, 等. 聚乳酸基聚苯胺柔性可降解超级电容器的制备及性能[J]. 复合材料学报, 2022, 39(1):193-202.

    WEI Huige, LI Guixing, WAN Tong, et al. Polyaniline growing on polylactic acid substrate towards flexible and biodegradable supercapacitors[J]. Acta Materiae Compositae Sinica,2022,39(1):193-202(in Chinese).
    [6]
    XIONG C, LI B, DUAN C, et al. Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications[J]. Chemical Engineering Journal,2021,418:129518. doi: 10.1016/j.cej.2021.129518
    [7]
    WEI H, GU H, GUO J, et al. Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields[J]. Advanced Composites and Hybrid Materials,2017,1(1):127-134.
    [8]
    WEI H, WANG H, LI A, et al. Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors[J]. Journal of Alloys and Compounds,2020,820:153111. doi: 10.1016/j.jallcom.2019.153111
    [9]
    CHEN L, JI T, BRISBIN L, et al. Hierarchical porous and high surface area tubular carbon as dye adsorbent and capacitor electrode[J]. ACS Applied Materials & Interfaces,2015,7(22):12230-12237. doi: 10.1021/acsami.5b02697
    [10]
    WANG H, YE W, YANG Y, et al. Zn-ion hybrid supercapaci-tors: Achievements, challenges and future perspectives[J]. Nano Energy,2021,85:105942. doi: 10.1016/j.nanoen.2021.105942
    [11]
    LIU N, WU X, ZHANG Y, et al. Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries[J]. Advanced Science,2020,7(14):2000146. doi: 10.1002/advs.202000146
    [12]
    ZHAO Y, WANG Y, ZHAO Z, et al. Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1, 5-naphthalenediamine) nanorods as cathode[J]. Energy Storage Materials,2020,28:64-72. doi: 10.1016/j.ensm.2020.03.001
    [13]
    XIN T, WANG Y, WANG N, et al. A high-capacity aqueous Zn-ion hybrid energy storage device using poly(4, 4′-thiodi-phenol)-modified activated carbon as a cathode material[J]. Journal of Materials Chemistry A,2019,7(40):23076-23083. doi: 10.1039/C9TA08693E
    [14]
    SINGH P, PAL K. Activated carbon-Polyaniline composite active material slurry electrode for high capacitance, improved rheological performance electrochemical flow capacitor[J]. Electrochimica Acta,2020,354:136719.
    [15]
    SONG S, MA F, WU G, et al. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors[J]. Journal of Materials Chemistry A,2015,3(35):18154-18162. doi: 10.1039/C5TA04721H
    [16]
    LI Z F, ZHANG H, LIU Q, et al. Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors[J]. ACS Applied Materials & Interfaces,2013,5(7):2685-2691.
    [17]
    RAZALI S A, RUSI, MAJID S R. Fabrication of polyaniline nanorods on electro-etched carbon cloth and its electrochemical activities as electrode materials[J]. Ionics,2018,25(6):2575-2584.
    [18]
    GAO X, YUE H, GUO E, et al. In-situ polymerization growth of polyaniline nanowire arrays on graphene foam for high specific capacitance supercapacitor electrode[J]. Journal of Materials Science: Materials in Electronics,2017,28(23):17939-17947. doi: 10.1007/s10854-017-7736-2
    [19]
    辛国祥, 王蒙蒙, 翟耀, 等. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2021, 38(4):1272-1282.

    XIN Guoxiang, WANG Mengmeng, ZHAI Yao, et al. One-step synthesis of polyaniline nanowire/self-supported graphene composite with excellent cycling stability[J]. Acta Materiae Compositae Sinica,2021,38(4):1272-1282(in Chinese).
    [20]
    LI Y, KAMDEM P, JIN X J. Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2021,850:156608. doi: 10.1016/j.jallcom.2020.156608
    [21]
    WEI H, ZHU J, WU S, et al. Electrochromic polyaniline/graphite oxide nanocomposites with endured electroche-mical energy storage[J]. Polymer,2013,54(7):1820-1831. doi: 10.1016/j.polymer.2013.01.051
    [22]
    侯朝霞, 赵蓝蔚. 三维多级孔石墨烯/聚苯胺复合材料的制备及电化学性能[J]. 复合材料学报, 2019, 36(7):1591-1600.

    HOU Zhaoxia, ZHAO Lanwei. Preparation and electrochemical performance of 3D hierarchical porous graphene/polyaniline composites[J]. Acta Materiae Compositae Sinica,2019,36(7):1591-1600(in Chinese).
    [23]
    HUANG Y Y, BAO S, LU J. Flower-like MnO2/polyaniline/hollow mesoporous silica as electrode for high-perfor-mance all-solid-state supercapacitors[J]. Journal of Alloys and Compounds,2020,845:156192. doi: 10.1016/j.jallcom.2020.156192
    [24]
    ZHAO N, DENG L, LUO D, et al. One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor[J]. Applied Surface Science,2020,526:146696. doi: 10.1016/j.apsusc.2020.146696
    [25]
    ZHUANG R, DONG Y, LI D, et al. Polyaniline-mediated coupling of Mn3O4 nanoparticles on activated carbon for high-performance asymmetric supercapacitors[J]. Jour-nal of Alloys and Compounds,2021,851:156871. doi: 10.1016/j.jallcom.2020.156871
    [26]
    SEYYED E, MOOSAVIFARD M F E K, MOHAMMAD S, et al. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces,2015,7:4851-4860.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (1451) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return