Volume 39 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
GU Shaohua, CHEN Jihe, ZHANG Wenfu, et al. Effect of gradient structure on the interface failure of bamboo bundle fiber composite material[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4065-4073. doi: 10.13801/j.cnki.fhclxb.20210917.003
Citation: GU Shaohua, CHEN Jihe, ZHANG Wenfu, et al. Effect of gradient structure on the interface failure of bamboo bundle fiber composite material[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4065-4073. doi: 10.13801/j.cnki.fhclxb.20210917.003

Effect of gradient structure on the interface failure of bamboo bundle fiber composite material

doi: 10.13801/j.cnki.fhclxb.20210917.003
  • Received Date: 2021-07-27
  • Accepted Date: 2021-09-06
  • Rev Recd Date: 2021-08-27
  • Available Online: 2021-09-17
  • Publish Date: 2022-08-31
  • In order to study the effect of bamboo gradient structure on the properties of bamboo bundle fiber composites, bamboo bundle fiber (BF) as the enhanced phase, epoxy resin (EP)-methyl tetrahydrophthalic anhydride (MeTHPA) system is the matrix phase, BF/EP-MeTHPA composite was prepared by thermopress molding. By changing the BF unit: yellow side (BF-YS) and green side bundle fiber (BF-GS), the effect of natural structure on the failure of interface of BF/EP composite was studied. Based on the mechanical properties of composites, through nano and micro test means such as dynamic thermomechanical analysis (DMA), in situ SEM and FTIR, the state of BF/EP-MeTHPA, interface microregion, thermal analysis and macromechanical characterization were studied. The experimental results show that due to the high fiber content and strength in BF-GS, the enhancement effect and distribution uniformity in epoxy system is better than BF-YS. But the permeability and interface performance are lower than bamboo bundle fiber of yellow side/epoxy resin-MeTHPA (BF-YS/EP-MeTHPA). Through the observation of the bamboo structure, it is found that BF-YS remains more parenchyma cells, and the rough surface favors the infiltration and adhesion of EP, so the infiltration force of BF-YS is about 60% in the contact angle test of BF-GS. FTIR shows that MeTHPA can react with BF hydroxyl groups to generate new ester bonds, making the chemical bond between BF and EP-MeTHPA system to improve the interface stability, while the exposure of the non-crystalline area of BF-YS makes its polarity stronger (106.5 mN/m), the relative area variation of the characteristic peaks is greater than BF-GS, easier to form, and the stability will also improve.

     

  • loading
  • [1]
    ZHUO P S, CHANG H F, SHENG X H, et al. Tensile properties of moso bamboo (phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure[J]. Wood Science and Technology,2010,44(4):655-666. doi: 10.1007/s00226-009-0290-1
    [2]
    WANG C, YU X, SMITH L M, et al. Interfacial properties of bamboo fiber-reinforced high-density polyethylene composites by different methods for adding nano calcium carbonate[J]. Polymers,2017,9(11):587. doi: 10.3390/polym9110587
    [3]
    HUANG J K, YOUNG W B. The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites[J]. Composites,2019,166(1):272-283.
    [4]
    ULRIKE G K, HAO B, EDUARDO S, et al. Bioinspired structural materials[J]. Nature Materials,2015,14(1):23-36. doi: 10.1038/nmat4089
    [5]
    WANG X, YUAN Z, ZHAN X, et al. Multi-scale characterization of the thermal-mechanically isolated bamboo fiber bundles and its potential application on engineered composites[J]. Construction and Building Materials,2020,262(10):120866.
    [6]
    LEE C H, YANG T H, CHENG Y W, et al. Effects of thermal modification on the surface and chemical properties of moso bamboo[J]. Construction and Building Materials,2018,178:59-71. doi: 10.1016/j.conbuildmat.2018.05.099
    [7]
    WEI X, ZHOU H Y, CHEN F M, et al. Bending flexibility of moso bamboo (phyllostachys edulis) with functionally graded structure[J]. Materials (Basel, Switzerland),2019,12(12):2007. doi: 10.3390/ma12122007
    [8]
    AK H P S, BHAT I, JAWAID M, et al. Bamboo fibre reinforced biocomposites: A review[J]. Materials and Design,2012,42:353-368. doi: 10.1016/j.matdes.2012.06.015
    [9]
    江泽慧, 孙正军, 任海青. 先进生物质复合材料在风电叶片中的应用[J]. 复合材料学报, 2006, 23(3): 127-129.

    JIANG Zehui, SUN Zhengjun, REN Haiqing. Application of advanced bio-composites in wind blades[J]. Acta Materiae Compositae Sinica, 2006, 23(3): 127-129(in Chinese).
    [10]
    孙正军, 程强, 江泽慧. 竹质工程材料的制造方法与性能[J]. 复合材料学报, 2008, 25(1):80-83. doi: 10.3321/j.issn:1000-3851.2008.01.014

    SUN Zhengjun, CHENG Qiang, JIANG Zehui. Processing and properties of engineering bamboo products[J]. Acta Materiae Compositae Sinica,2008, 25(1):80-83(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.014
    [11]
    KU H, WANG H, PATTARACHAIYAKOOP N, et al. A review on the tensile properties of natural fiber reinforced polymer composites[J]. Composites Part B: Engineering,2011,42(4):856-873. doi: 10.1016/j.compositesb.2011.01.010
    [12]
    KABIR M M, WANG H, LAU K T, et al. Chemical treatments on plant-based natural fiber reinforced polymer compo-sites: An overview[J]. Composites Part B: Engineering,2012,43(7):2883-2892. doi: 10.1016/j.compositesb.2012.04.053
    [13]
    FIORE V, BELLA G D, VALENZA A. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites[J]. Composites Part B: Engineering,2015,68(1):14-21.
    [14]
    MITTALV, SAINI R, SINHA S. Natural fiber-mediated epoxy composites—A review[J]. Composites Part B: Engi-neering,2016,99(8):425-435. doi: 10.1016/j.compositesb.2016.06.051
    [15]
    SAHA P, MANNA S, CHOWDHURY S R, et al. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment[J]. Bioresource Technology,2010,101(9):3182-3187. doi: 10.1016/j.biortech.2009.12.010
    [16]
    中国国家标准化管理委员会. 人造板及饰面人造板理化性能试验方法: GB/T17657—2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People’s Republic of China. Test methods of evaluating the properties of wood-based panels and surface decorated wood-based panels: GB/T 17657—2013[S]. Beijing: China Standards Press, 2013(in Chinese).
    [17]
    王戈, 陈红, 余雁, 等. 竹纤维细胞水平的物理力学性能精细表征技术[J]. 北京林业大学学报, 2011, 33(4):143-148.

    WANG Ge, CHEN Hong, YU Yan, et al. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level[J]. Journal of Beijing Forestry University,2011,33(4):143-148(in Chinese).
    [18]
    American Society for Testing and Materials International. Standard test method for glass transition temperature (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA): D7028-07[S]. West Conshohocken: American Society for Testing and Materials, 2008.
    [19]
    王翠翠, 程海涛, 羡瑜, 等. 纳米CaCO3增强竹浆纤维/环氧树脂复合材料的动态力学性能[J]. 农业工程学报, 2017, 3(6):281-287. doi: 10.11975/j.issn.1002-6819.2017.06.036

    WANG Cuicui, CHENG Haitao, XIAN Yu, et al. Improving dynamic mechanical property of bamboo pulp fiber reinforced epoxy resin composite treated by nano calcium carbonate[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,3(6):281-287(in Chinese). doi: 10.11975/j.issn.1002-6819.2017.06.036
    [20]
    程海涛, 王戈, 谌晓梦, 等. 光学法和力学法测定单根纤维接触角及相关性分析[J]. 林产工业, 2013, 40(1):49-51. doi: 10.3969/j.issn.1001-5299.2013.01.014

    CHENG Haitao, WANG Ge, SHEN Xiaomeng, et al. Single fiber contact angle measured by different methods and correlation analysis[J]. China Forest Products Industry,2013,40(1):49-51(in Chinese). doi: 10.3969/j.issn.1001-5299.2013.01.014
    [21]
    HODGSON K T, BERG J C. Dynamic wettability properties of single wood pulp fibers and their relationship to absorbency[J]. Wood & Fiber Science,1988,20(1):3-17.
    [22]
    FUENTES C A, TRAN L Q, DUPONT G C, et al. Wetting behaviour and surface properties of technical bamboo fibres[J]. Colloid Surface A,2011,380(1-3):89-99.
    [23]
    QIU S, FUENTES C A, ZHANG D X, et al. Wettability of a single carbon fiber[J]. Langmuir,2016,32(38):9697-9705. doi: 10.1021/acs.langmuir.6b02072
    [24]
    XIE Y J, CALLUM A S H, XIAO Z F, et al. Silane coupling agents used for natural fiber/polymer composites: A review[J]. Composites Part A: Applied Science and Manufacturing,2010,41(7):806-819. doi: 10.1016/j.compositesa.2010.03.005
    [25]
    PAUL S A, JOSEPH K, MATHEW G D G, et al. Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber[J]. Composites Part A: Applied Science and Manufacturing,2010,41(10):1380-1387. doi: 10.1016/j.compositesa.2010.04.015
    [26]
    FUENTES C A, TRAN L, HELLEMONT M V, et al. Effect of physical adhesion on mechanical behaviour of bamboo fibre reinforced thermoplastic composites[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects,2013,418:7-15.
    [27]
    KASIVISWANATHAN S, SANTHANAM K, KUMARAVEL A. Evaluation of mechanical properties of natural hybrid fibers, reinforced polyester composite materials[J]. Carbon-Science and Technology,2015,7(4):43-49.
    [28]
    XIONG Z, CHAO L, MA S, et al. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride[J]. Carbohydrate Polymers,2013,95(1):77-84. doi: 10.1016/j.carbpol.2013.02.054
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (739) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return