Volume 39 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LIU Jintao, HUANG Cunwang, YANG Yang, et al. Piezoresistivity of three dimensional graphene-carbon nanotubes/cement paste[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 313-321. doi: 10.13801/j.cnki.fhclxb.20210331.001
Citation: LIU Jintao, HUANG Cunwang, YANG Yang, et al. Piezoresistivity of three dimensional graphene-carbon nanotubes/cement paste[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 313-321. doi: 10.13801/j.cnki.fhclxb.20210331.001

Piezoresistivity of three dimensional graphene-carbon nanotubes/cement paste

doi: 10.13801/j.cnki.fhclxb.20210331.001
  • Received Date: 2021-01-15
  • Accepted Date: 2021-03-24
  • Rev Recd Date: 2021-03-14
  • Available Online: 2021-03-31
  • Publish Date: 2022-01-15
  • In order to explore the piezoresistivity of three dimensional graphene-carbon nanotubes (G-CNTs)/cement paste, the four-electrode method was used to study the resistivity change of the G-CNTs/cement paste under load. The influence of G-CNTs content, loading amplitude, loading speed and constant load on the resistivity change was analyzed. The results show that the resistivity decreases first and then tends to stabilize with the increase of the G-CNTs content. When the G-CNTs content increases from 0.2wt% to 1.6wt%, the resistivity decreases by 51.8%. The resistivity is negatively correlated with temperature. When the G-CNTs content is higher than 0.8wt%, the piezoresistivity of the cement paste is significantly improved, and the rate of change in resistivity has an obvious corresponding relationship with the stress-strain. The stress sensitivity coefficient and the strain sensitivity coefficient of the specimens with 1.2wt% G-CNTs are 2.3%/MPa and 291, respectively. The amplitude of the rate of change in resistivity of G-CNTs/cement paste increases as the loading amplitude increasing. The rate of change in resistivity curve corresponding to the stress-strain changes under different loading speeds and constant load exhibits good piezoresistivity.

     

  • loading
  • [1]
    LIU Jintao, FU Jiali, YANG Yang, et al. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets[J]. Construction and Building Materials,2019,199:1-11. doi: 10.1016/j.conbuildmat.2018.12.006
    [2]
    XIE Ping, GU Ping, BEAUDOIN J J. Electrical percolation phenomena in cement composites containing conductive fibres[J]. Journal of Materials Science,1996,31(15):4093-4097. doi: 10.1007/BF00352673
    [3]
    施 韬, 朱 敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5):1033-1049.

    SHI Tao, ZHU Min, LI Zexin, et al. Research progress of carbon nanotubes modified cement-based composites[J]. Acta Materiae Compositae Sinica,2018,35(5):1033-1049(in Chinese).
    [4]
    CHIARELLO Manuela, ZINNO Raffaele. Electrical conductivity of self-monitoring CFRC[J]. Cement & Concrete Composites,2005,27(4):463-469.
    [5]
    LIU Xiaoming, WU Shaopeng. Study on the graphite and carbon fiber modified asphalt concrete[J]. Construction & Building Materials,2011,25:1807-1811.
    [6]
    TIAN Zhuang, LI Yancheng, ZHENG Jiajia, et al. A state-of-the-art on self-sensing concrete: Materials, fabrication and properties[J]. Composites Part B: Engineering,2019,177:1-17.
    [7]
    范晓明, 董 旭, 孙明清, 等. 掺CCCW的碳纤维石墨水泥基复合材料的导电及压阻特性[J]. 复合材料学报, 2009, 26(6):138-142. doi: 10.3321/j.issn:1000-3851.2009.06.023

    FAN Xiaoming, DONG Xu, SUN Mingqing, et al. Conducti-vity and piezoresistive properties of carbon fiber graphite cement matrix composites doped with CCCW[J]. Acta Materiae Compositae Sinica,2009,26(6):138-142(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.06.023
    [8]
    HAN Baoguo, OU Jinping. Embedded piezoresistive cement-based stress/strain sensor[J]. Sensors and Actuators A: Physical,2007,138(2):294-298. doi: 10.1016/j.sna.2007.05.011
    [9]
    LI Hui, XIAO Huigang, OU Jinping. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites[J]. Cement and Concrete Composites,2006,28(9):824-828. doi: 10.1016/j.cemconcomp.2006.05.004
    [10]
    MONTEIRO A O, CACHIM P B, COSTA P M F J. Self-sensing piezoresistive cement composite loaded with carbon black particles[J]. Cement and Concrete Composites,2017,81:59-65. doi: 10.1016/j.cemconcomp.2017.04.009
    [11]
    KATSNELSON M I. Graphene: carbon in two dimensions[J]. Materials Today,2007,10(1-2):20-27. doi: 10.1016/S1369-7021(06)71788-6
    [12]
    E SILVA R A, DE CASTRO G P, DA LUZ M S, et al. Enhanced properties of cement mortars with multilayer graphene nanoparticles[J]. Construction and Building Materials,2017,149:378-385. doi: 10.1016/j.conbuildmat.2017.05.146
    [13]
    SUN Mingqing, LIU Qingping, LI Zhouqiu, et al. A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading[J]. Cement & Concrete Research,2000,30(10):1593-1595.
    [14]
    AZHARI Faezeh, BANTHIA Nemkuamr. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing[J]. Cement and Concrete Compo-sites,2012,34(7):866-873. doi: 10.1016/j.cemconcomp.2012.04.007
    [15]
    疏金成, 曹茂盛. 石墨烯基电磁功能材料[J]. 表面技术, 2020, 49(2):40-51.

    SHU Jincheng, CAO Maosheng. Graphene-based electromagnetic functional materials[J]. Surface Technology,2020,49(2):40-51(in Chinese).
    [16]
    赵冬梅, 李振伟, 刘领弟, 等. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72(2):185-200.

    ZHAO Dongmei, LI Zhenwei, LIU Lingdi, et al. Progress of preparation and application of graphene/carbon nano-tube composite materials[J]. Acta Chimica Sinica,2014,72(2):185-200(in Chinese).
    [17]
    左俊卿, 周 虹, 姚 武, 等. CNT-CF水泥基材料传感特性研究[J]. 材料导报, 2017(22):129-133.

    ZUO Junqing, ZOU Hong, YAO Wu, et al. Study on sensing Properties of CNT-CF Cement-based materials[J]. Materials Reports,2017(22):129-133(in Chinese).
    [18]
    刘 衡, 孙明清, 李 俊, 等. 掺纳米石墨烯片的水泥基复合材料的压敏性[J]. 功能材料, 2015, 46(16):78-82.

    LIU Heng, SUN Mingqing, LI Jun, et al. Pressure sensitivity of cement-based composites doped with nanometer graphene sheets[J]. Jorunal of Functional Materials,2015,46(16):78-82(in Chinese).
    [19]
    赵 昕, 黄存旺, 傅佳丽, 等. 石墨烯水泥复合材料的电学性能[J]. 建筑材料学报, 2021, 录用.

    ZHAO Xin, HUANG Cunwang, FU Jiali, et al. Electrical properties of graphene cement composites[J]. Journal of Building Materials, 2021, Accepted(in Chinese)
    [20]
    狄莹莹, 任鹏刚, 张 倩. 石墨烯-多壁碳纳米管/超高分子量聚乙烯导电复合材料的制备及性能[J]. 复合材料学报, 2012, 29(04):36-41.

    DI Yingying, REN Penggang, ZHANG Qian. Preparation and properties of graphene-multi-wall carbon nanotubes/ultrahigh molecular weight polyethylene conductive composites[J]. Acta Materiae Compositae Sinica,2012,29(04):36-41(in Chinese).
    [21]
    YANG Peihua, MAI Wenjie. Flexible solid-state electrochemical supercapacitors[J]. Nano Energy,2014,8:274-290. doi: 10.1016/j.nanoen.2014.05.022
    [22]
    徐 丽, 毕 辉, 黄富强, 等. 三维石墨烯/碳纳米管复合材料及其超级电容器应用[J]. 功能材料, 2016, 47(z2):112-115.

    XU Li, BI Hui, HUANG Fuqiang, et al. 3D graphene/carbon nanotube composites and their supercapacitor applications[J]. Jorunal of Functional Materials,2016,47(z2):112-115(in Chinese).
    [23]
    张 宁, 金 燕, 周玲玲, 等. 基于三元金属催化剂制备碳纳米管/三维石墨烯复合材料及电容性能[J]. 复合材料学报, 2019, 36(3):739-747.

    ZHANG Ning, JIN Yan, ZHOU Lingling, et al. Carbon nanotube/3D graphene composites and their capacitive properties were prepared based on ternary metal catalyst[J]. Acta Materiae Compositae Sinica,2019,36(3):739-747(in Chinese).
    [24]
    PARVEEN Shama, RANA Sohel, FANGUEIRO Raul. A Review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites[J]. Journal of Nanomaterials,2013,2013:1-19.
    [25]
    CHEN Bing, LIU Juanyu, WU Keru. Electrical responses of carbon fiber reinforced cementitious composites to monotonic and cyclic loading[J]. Cement and Concrete Research,2005,35(11):2183-2191. doi: 10.1016/j.cemconres.2005.02.004
    [26]
    HAN Baoguo, DING Siqi, YU Xun. Intrinsic self-sensing concrete and structures: A review[J]. Measurement,2015,59:110-128. doi: 10.1016/j.measurement.2014.09.048
    [27]
    CAO Maosheng, SONG Weili, HOU Zhiling, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon,2010,48:788-796. doi: 10.1016/j.carbon.2009.10.028
    [28]
    唐祖全, 李卓球, 张华. 混凝土路面温度自诊断特性的实验研究[C]. 第十届全国结构工程学术会议, 南京: 2001.

    TANG Zuquan, LI Zhuoqiu, ZHANG Hua. Experimental study on temperature self-diagnosis characteristics of concrete pavement[C]. The 10th National Structural Engineering Academic Conference, Nanjing: 2001(in Chinese).
    [29]
    立树旺. 碳纤维改性磷酸镁水泥粘结性和压敏性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    LI Shuwang. Study on interface bonding performance and pressure sensitivity of carbon fiber modified magnesium phosphate cement[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [30]
    ZHAI Shengtian, PANG Bo, LIU Guojian, et al. Investigation on preparation and multifunctionality of reduced graphene oxide cement mortar[J]. Construction and Building Materials,2021,275:122119. doi: 10.1016/j.conbuildmat.2020.122119
    [31]
    SUN Shengwei, HAN Baoguo, JIANG Shan, et al. Nano graphite platelets-enabled piezoresistive cementitious composites for structural health monitoring[J]. Construction and Building Materials,2017,136:314-328. doi: 10.1016/j.conbuildmat.2017.01.006
    [32]
    LUO Jianlin, ZHANG Chunwei, DUAN Zhongdong, et al. Influences of multi-walled carbon nanotube (MCNT) fraction, moisture, stress/strain level on the electrical properties of MCNT cement-based composites[J]. Sensors and Actuators A: Physical,2018,280:413-421. doi: 10.1016/j.sna.2018.08.010
    [33]
    YU Xun, KWON Eil. A carbon nanotube/cement composite with piezoresistive properties[J]. Smart Materials and Structures,2009,18(5):1-5.
    [34]
    XU Jinxia, CAO Yalong, JIANG Linhua, et al. Microstructure and pressure-sensitive properties of cement-based composite with Ni nanowires[J]. Construction and Building Materials,2018,159:46-53. doi: 10.1016/j.conbuildmat.2017.10.114
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (699) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return