Volume 39 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
ZHANG Pingping, NIE Pengfei, WANG Guixue, et al. Preparation and catalytic performance of nickel-phosphorus-titanium silicalite zeolite composite[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 213-221. doi: 10.13801/j.cnki.fhclxb.20210320.002
Citation: ZHANG Pingping, NIE Pengfei, WANG Guixue, et al. Preparation and catalytic performance of nickel-phosphorus-titanium silicalite zeolite composite[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 213-221. doi: 10.13801/j.cnki.fhclxb.20210320.002

Preparation and catalytic performance of nickel-phosphorus-titanium silicalite zeolite composite

doi: 10.13801/j.cnki.fhclxb.20210320.002
  • Received Date: 2021-01-13
  • Accepted Date: 2021-03-15
  • Rev Recd Date: 2021-03-11
  • Available Online: 2021-03-22
  • Publish Date: 2022-01-15
  • Nickel-phosphorus-titanium silicalite zeolite (Ni-P-HTS-1/NF-T) composite was prepared by electroless composite plating and in-situ treatment process with hierarchical titanium silicalite (HTS-1) zeolite as composite phase and nickel foam (NF) as matrix materials, and its electrocatalytic oxygen evolution reaction (OER) performance was studied. The results show that Ni-P-HTS-1/NF-T composite has faster OER kinetics and electron transfer rate, excellent OER performance and long-term stability in 1.0 mol/L KOH electrolyte. The doping of HTS-1 zeolite and in-situ treatment process reduce the electron transfer resistance of Ni-P-HTS-1/NF-T composite, increase its electrocatalytic active surface area, and change the chemical composition of the composite to form nickel phosphide and hydroxide which can provide catalytic active centers for electrocatalytic oxygen evolution reaction, thus effectively improving the OER performance of Ni-P-HTS-1/NF-T composite.

     

  • loading
  • [1]
    HUSSAIN A, ARIF S M, ASLAM M. Emerging renewable and sustainable energy technologies: State of the art[J]. Renewable and Sustainable Energy Reviews,2017,71:12-28. doi: 10.1016/j.rser.2016.12.033
    [2]
    孟培媛, 郭明媛, 乔勋. WS2/g-C3N4异质结光催化分解水制氢性能及机理[J]. 复合材料学报, 2021, 38(2):591-600.

    MENG Peiyuan, GUO Mingyuan, QIAO Xun. Establish WS2/g-C3N4 heterojunction to improve the H2 production performance of photocatalyst and mechanism study[J]. Acta Materiae Compositae Sinica,2021,38(2):591-600(in Chinese).
    [3]
    MINUTILLO M, PERNA A, SORCE A. Green hydrogen production plants via biogas steam and autothermal reforming processes: Energy and exergy analyses[J]. Applied Energy,2020,277:115452. doi: 10.1016/j.apenergy.2020.115452
    [4]
    LI L, LIN J, WU N Y, et al. Review and outlook on the international renewable energy development[J]. Energy and Built Environment,2020,17:12-19.
    [5]
    LIU W G, ZUO H B, WANG J S, et al. The production and application of hydrogen in steel industry[J]. International Journal of Hydrogen Energy,2020,12(17):10548-10569.
    [6]
    AMORES E, SANCHE M, ROJAS N, et al. Sustainable fuel technologies handbook [M]. New York: Academic Press, 2021: 271-313.
    [7]
    WANG H, YUAN Y, GU J L, et al. Facile one-pot synthesis of layered double hydroxides nanosheets with oxygen vacancies grown on carbon nanotubes for efficient oxygen evolution reaction[J]. Journal of Power Sources,2020,467:228354. doi: 10.1016/j.jpowsour.2020.228354
    [8]
    LV Z H, ZHANG Y, WANG K L. High performance of Co-P/NF electrocatalyst for oxygen evolution reaction[J]. Materials Chemistry and Physics,2019,235:121772. doi: 10.1016/j.matchemphys.2019.121772
    [9]
    CHEN D W, QIAO M, LIU Y R, et al. Preferential cation vacancies inperovskite hydroxide for the oxygen evolution reaction[J]. Angewandte Chemie International Edition,2018,57(28):8691-8696. doi: 10.1002/anie.201805520
    [10]
    LI R Q, WAN X Y, CHEN B L, et al. Hierarchical Ni3N/Ni0.2Mo0.8N hetero- structure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis[J]. Chemical Engineering Journal,2021,409:12840.
    [11]
    CHEN D, LU R H, PU Z H, et al. Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting[J]. Applied Catalysis B,2020,279:119396. doi: 10.1016/j.apcatb.2020.119396
    [12]
    BADAM R, HARA M, HUANG H H, et al. Synthesis and electrochemical analysis of novel IrO2 nanoparticle catalysts supported on carbon nanotube for oxygen evolution reaction[J]. International Journal of Hydrogen Energy,2018,43(39):18095-18104. doi: 10.1016/j.ijhydene.2018.08.034
    [13]
    RANI B J, PRADEEPA S S, HASAN Z M, et al. Supercapacitor and OER activity of transition metal (Mo, Co, Cu) sulphides[J]. Journal of Physics and Chemistry of Solids,2020,138:109240. doi: 10.1016/j.jpcs.2019.109240
    [14]
    WANG K X, WANG X Y, LI Z J, et al. Designing 3D dual transition metal electro-catalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides[J]. Nano Energy,2020,77:105162. doi: 10.1016/j.nanoen.2020.105162
    [15]
    VIJ V, SULTAN S, HARZANDI A M, et al. Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions[J]. ACS Catalysis,2017,7(10):7196-7225. doi: 10.1021/acscatal.7b01800
    [16]
    PAN C C, LIU Z C, HUANG M H. 2D iron-doped nickel MOF nanosheets grown on nickel foam for highly efficient oxygen evolution reaction[J]. Applied Surface Science,2020,529:147201. doi: 10.1016/j.apsusc.2020.147201
    [17]
    WAN K, LUO J S, ZHANG X, et al. In-situ formation of Ni (oxy)hydroxide on Ni foam as an efficient electrocatalyst for oxygen evolution reaction[J]. International Journal of Hydrogen Energy,2020,45(15):8490-8496. doi: 10.1016/j.ijhydene.2020.01.043
    [18]
    涂言言, 赵子涵, 孙一强. FeOOH-Ni(OH)2复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2020, 37(8):1944-1950.

    TU Yanyan, ZHAO Zihan, SUN Yiqiang. Synthesis and electrocatalytic oxygen evolution performances of FeOOH- Ni(OH)2 composites[J]. Acta Materiae Compositae Sinica,2020,37(8):1944-1950(in Chinese).
    [19]
    WANG K H, SI Y Y, LV Z H, et al. Efficient and stable Ni-Co-Fe-P nanosheet arrays on Ni foam for alkaline and neutral hydrogen evolution[J]. International Journal of Hydrogen Energy,2020,45(4):2504-2512. doi: 10.1016/j.ijhydene.2019.11.154
    [20]
    LI M, PAN X C, JIANG M Q, et al. Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction[J]. Chemical Engineering Journal,2020,395:125160. doi: 10.1016/j.cej.2020.125160
    [21]
    TIAN Y H, XU L, QIU J X, et al. Rational design of sustainable transition metal-based bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Sustainable Materials and Technologies,2020,25:e00204. doi: 10.1016/j.susmat.2020.e00204
    [22]
    LIU X G, GE P P, ZHANG Y M, et al. Highly oriented thin membrane fabrication with hierarchically porous zeolite seed[J]. Crystal Growth & Design,2018,18(8):4544-4554.
    [23]
    SHAO Y C, WANG H J, LIU X F, et al. Single-crystalline hierarchically-porous TS-1 zeolite catalysts via a solid-phase transformation mechanism[J]. Micro-porous and Mesoporous Materials,2021,313:110828. doi: 10.1016/j.micromeso.2020.110828
    [24]
    LIU X G, SONG H J, SUN W J, et al. Strong nano size effect of titanium silicalite (TS-1) zeolites for electrorheological fluid[J]. Chemical Engineering Journal,2020,384(15):123267.
    [25]
    ZHANG P P, LV Z H, LIU X G, et al. Electroless nickel plating on alumina ceramic activated by metallic nickel as electrocatalyst for oxygen evolution reaction[J]. Catalysis Communications,2021,149:106238. doi: 10.1016/j.catcom.2020.106238
    [26]
    GUO X M, QIAN Y, ZHANG W, et al. Amorphous Ni-P with hollow dendritic architecture as bifunctional electrocatalyst for overall water splitting[J]. Journal of Alloys and Compounds,2018,765:835-840. doi: 10.1016/j.jallcom.2018.06.321
    [27]
    YANG Q P, LV C C, HUANG Z P, et al. Amorphous film of ternary Ni-Co-P alloy on Ni foam for efficient hydrogen evolution by electroless deposition.[J]. International Journal of Hydrogen Energy,2018,43(16):7872-7880. doi: 10.1016/j.ijhydene.2018.03.003
    [28]
    DING Y D, LI H Y, HOU Y. Phosphorus-doped nickel sulfides/nickel foam as electrode materials for electrocatalytic water splitting[J]. International Journal of Hydrogen Energy,2018,43(41):19002-19009. doi: 10.1016/j.ijhydene.2018.08.083
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (748) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return