Volume 39 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
YANG Jinhui, HU Shiqin, YANG Bin, et al. Preparation of ammoniated tobacco leave powder residue biochar and its adsorption behavior on Cr(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 222-231. doi: 10.13801/j.cnki.fhclxb.20210320.001
Citation: YANG Jinhui, HU Shiqin, YANG Bin, et al. Preparation of ammoniated tobacco leave powder residue biochar and its adsorption behavior on Cr(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 222-231. doi: 10.13801/j.cnki.fhclxb.20210320.001

Preparation of ammoniated tobacco leave powder residue biochar and its adsorption behavior on Cr(VI)

doi: 10.13801/j.cnki.fhclxb.20210320.001
  • Received Date: 2021-01-14
  • Accepted Date: 2021-03-15
  • Rev Recd Date: 2021-03-04
  • Available Online: 2021-03-22
  • Publish Date: 2022-01-15
  • Using the waste cigarette leave powder residue as raw materials, after carbonization, the amino functional group was introduced to prepare the ammoniated tobacco leave powder residue biochar (NH 2/TPB), and the effects of pH, dosage, temperature and adsorption time on NH 2/TPB adsorption of Cr(Ⅵ) were studied. The mechanism was analyzed by scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and other techniques. The results show that when the initial concentration is 210 mg/L, pH=4, dosage is 0.8 g/L, temperature is 45℃, and adsorption time is 120 min, the maximum adsorption capacity of NH 2/TPB for Cr(Ⅵ) is 103.627 mg/g. The adsorption process conforms the quasi-second-order kinetic model and Langmuir adsorption isotherm model. The adsorption and removal mechanism of Cr(Ⅵ) mainly include electrostatic interaction, reduction reaction, coordination and complexation with —NH 2, —OH, —COOH, and “π-π” interaction with Si—O—Si. Through five times about adsorption-desorption tests, the Cr(Ⅵ) removal rate is more than 82.88%. This research presents that the ammoniated tobacco leave powder residue biochar has the potential to treat and repair acidic Cr(Ⅵ)-containing wastewater pollution.

     

  • loading
  • [1]
    NOROUZI S, HEIDARI M, ALIPOUR V, et al. Preparation, characterization and Cr(Ⅵ) adsorption evaluation of naoh-activated carbon produced from date press cake; an agro-industrial waste[J]. Bioresour Technology,2018,258:48-56. doi: 10.1016/j.biortech.2018.02.106
    [2]
    王恩萱. 花生壳活性炭对六价铬的吸附[J]. 环境科学导刊, 2010, 29(S1):67-71.

    WANG Enxuan. Absorption of hexavalent chromium by peanut shell as activated carbon[J]. Environmental Science Survey,2010,29(S1):67-71(in Chinese).
    [3]
    ACHARYA J, SAHU J N, SAHOO B K, et al. Removal of chromium(Ⅵ) from wastewater by activated carbon developed from tamarind wood activated with zinc chloride[J]. Chemical Engineering Journal,2008,150(1):25-39.
    [4]
    CRONJE K J, CHETTY K, CARSKY M, et al. Optimization of chromium(Ⅵ) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride[J]. Desalination,2011,275(1):276-284.
    [5]
    MAYA R, UNNITHAN T. S. The Kinetics and thermodynamics of sorption of chromium(Ⅵ) onto the iron(Ⅲ) complex of a carboxylated polyacrylamide-grafted sawdust[J]. American Chemical Society,2001,40:2693-2701.
    [6]
    BAMPAITI A, YUSAN S, AYTAS S, et al. Investigation of uranium biosorption from aqueous solutions by dictyopteris polypodioides brown algae[J]. Journal of Radioanalytical and Nuclear Chemistry,2015,307(2):1-9.
    [7]
    YI X, CHANGLUM C, XUEMEI R, et al. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation[J]. Progress in Materials Science,2019,103:180-234. doi: 10.1016/j.pmatsci.2019.01.005
    [8]
    董占能, 白聚川, 张皓东. 烟草废弃物资源化[J]. 中国烟草科学, 2008(1):39-42. doi: 10.3969/j.issn.1007-5119.2008.01.009

    DONG Zhanneng, BAI Juchuan, ZHANG Haodong, et al. Comprehensive utilization of tobacco waste[J]. Chinese Tobacco Science,2008(1):39-42(in Chinese). doi: 10.3969/j.issn.1007-5119.2008.01.009
    [9]
    FAROOP U, KOZINSKI J A, KHAN M A, et al. Biosorption of heavy metal ions using wheat based biosorbents: A review of the recent literature[J]. Bioresource Technology,2010,101(14):5043-5053. doi: 10.1016/j.biortech.2010.02.030
    [10]
    马芳, 黄淑萍, 杜宏涛. 小麦秸秆两性吸附剂的制备及其去除水中Pb 2+和As 5+的机制[J]. 农业工程学报, 2019, 35(20):210-219. doi: 10.11975/j.issn.1002-6819.2019.20.026

    MA Fang, HUANG Shuping, DU Hongtao. Preparation of a novel amphoteric bio-adsorbent using wheat straw and mechanism for removing Pb 2+ and As 5+ from aqueous solutions[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(20):210-219(in Chinese). doi: 10.11975/j.issn.1002-6819.2019.20.026
    [11]
    戴江栋. 多孔碳基材料的可控制备及其高效分离抗生素行为和机理研究[D]. 镇江: 江苏大学, 2016.

    DAI Jiangdong. Controlled preparation of porous carbon-based materials and study on behavior and mechanism of high-efficiency antibiotic separation[D]. Zhenjiang: Jiangsu University, 2016(in Chinese).
    [12]
    王淑娟, 郭伟, 史江红, 等. 氨基修饰稻壳生物炭对水溶液中铀的吸附动力学特性[J]. 环境科学研究, 2019, 32(2):347-355.

    WANG Shujuan, GUO Wei, SHI Jianghong, et al. Adsorption kinetics of uranium (Ⅵ) from aqueous solution by amino modified rice husk biochar[J]. Research of Environmental Sciences,2019,32(2):347-355(in Chinese).
    [13]
    刘澜. 改性稻秆吸附剂表征及处理亚甲基蓝溶液的吸附性能研究[D]. 重庆: 重庆大学, 2011.

    LIU Lan. Study of modified straw adsorbent characterization and adsorption performance of methylene blue solution[D]. Chongqing: Chongqing University, 2011(in Chinese).
    [14]
    李志琳, 解宇峰, 程德义, 等. 氨化改性小麦秸秆对水体Cd 2+的吸附性能研究[J]. 环境工程技术学报, 2019, 9(5):566-572.

    LI Zhilin, XIE Yufeng, CHENG Deyi, et al. Adsorption properties of ammonia-modified wheat straw on aquatic cadmium[J]. Journal of Environmental Engineering Technology,2019,9(5):566-572(in Chinese).
    [15]
    中国国家标准化管理委员会 (标准制定单位). 水质六价铬(Ⅵ)的测定二苯碳酰二肼分光光度法: GB/T 7467—1987[S]. 北京: 中国标准出版社, 1987.

    Standardization Administration of the People’s Republic of China. Water quality-Determination of chromium(Ⅵ)-1, 5 Diphenylcarbohydrazide spectrophotometric method: GB/T 7467—1987[S]. Beijing: China Standards Press, 1987(in Chinese).
    [16]
    马志强, 胥思勤, 姬江浩, 等. 改性水稻生物炭对水体中Sb(Ⅲ)的吸附[J]. 中国环境科学, 2021, 41(6): 2706 − 2716.

    MA Zhiqiang, PENG Gangyi, JI Jianghao, et al. Adsorption of Sb(Ⅲ) in water by modified rice biochar[J]. China Environmental Science, 2021, 41(6): 2706 − 716(in Chinese).
    [17]
    雷增江, 杨斌, 杨金辉, 等. 铝污泥基复合凝胶球对Cr(Ⅵ)的吸附性能与机理[J]. 精细化工, 2021, 38(7): 1 − 14.

    LEI Zengliang, YANG Bin, YANG Jinhui, et al. Adsorption performance and mechanism of Cr(Ⅵ) by aluminum sludge composite gel spheres[J]. Fine Chemicals, 2021, 38(7): 1 − 14(in Chinese).
    [18]
    莫官海, 谢水波, 曾涛涛, 等. 污泥基生物炭处理酸性含U(Ⅵ)废水的效能与机理[J]. 化工学报, 2020, 71(5):2352-2362.

    MO Guanhai, XIE Shuibo, ZENG Taotao, et al. The efficiency and mechanism of U(Ⅵ) removal from acidic wastewater by sewage sludge-derived biochar[J]. CIESC Journal,2020,71(5):2352-2362(in Chinese).
    [19]
    ZHANG W, ZHANG S L, WANG J, et al. Hybrid functionalized chitosan-Al 2O 3@SiO 2 composite for enhanced Cr(Ⅵ) adsorption[J]. Chemosphere,2018,203:188-198. doi: 10.1016/j.chemosphere.2018.03.188
    [20]
    王宇欣, 李雪嫄, 赵亚楠, 等. 硼缓释型高吸水性树脂制备与性能表征[J]. 农业机械学报, 2019, 50(7):340-348.

    WANG Yuxin LI Xue yuan, ZHAO Yanan, et al. Preparation and performance characterization of boron sustained-release super absorbent resin[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(7):340-348(in Chinese).
    [21]
    DENG S B, BAI R B. Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: Performance and mechanisms[J]. Water Research,2004,38(9):2424-2432.
    [22]
    ZHANG T J, LI B, HAN J H, et al. Study on adsorption performance and mechanism of chromium on magnetic modified corn stalk[J]. Industrial Water Treatment,2020,40(12):100-105.
    [23]
    SALEHA A S, LEEA J Y. Uranium (Ⅵ) sorption complexes on silica in the presence of calcium and carbonate[J]. Journal of Environmental Radioactivity,2018,182:63-69. doi: 10.1016/j.jenvrad.2017.11.006
    [24]
    LIU Y Y, SOHI S P, LIU S Y, et al. Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar[J]. Journal of Environmental Management,2019,235:276-281.
    [25]
    王家宏, 陈瑶, 孙彤彤. 改性凹凸棒土吸附剂的制备及对水中Cr(Ⅵ)的吸附机理[J]. 材料导报, 2020, 34(11):11003-11008. doi: 10.11896/cldb.19030261

    WANG Jianghong, CHEN Yao, SUN Tongtong. Preparation of modified attapulgite adsorbent and its adsorption mechanism for aqueous Cr(Ⅵ)[J]. Materials Reports,2020,34(11):11003-11008(in Chinese). doi: 10.11896/cldb.19030261
    [26]
    GAO Y, CHEN C L, TAN X L, et al. Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(Ⅵ)[J]. Journal of Colloid and Interfacce Science,2016,476:62-70. doi: 10.1016/j.jcis.2016.05.022
    [27]
    PING W, WU Y, YANG C X, et al. Properties and mechanism of Cd(Ⅱ) adsorption from waste water by modified banana peel[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(8):269-279.
    [28]
    CAGLAYAN B S, AKSOYLU A E. CO 2 adsorption on chemically modified activated carbon[J]. Journal of Hazardous Materials,2013,252-253:19-28.
    [29]
    何宏平, 郭龙皋, 谢先德, 等. 蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J]. 矿物学报, 1999(2):231-235. doi: 10.3321/j.issn:1000-4734.1999.02.016

    HE Hongping, GUO Longao, XIE Xiande, et al. Experimental study on the adsorption selectivity of heavy metal ions by clay minerals such as montmorillonite[J]. Acta Mineralogica Sinica,1999(2):231-235(in Chinese). doi: 10.3321/j.issn:1000-4734.1999.02.016
    [30]
    葛军, 申星梅, 吴成志, 等. K +、Na +、Ca 2+共存离子对活性炭吸附Cr(Ⅵ)的影响[J]. 环境污染与防治, 2019, 41(1):6-9.

    GE Jun, SHEN Xingmei, WU Chengzhi, et al. Effects of K +, Na + and Ca 2+ coexisting ions on the adsorption of Cr(Ⅵ) by activated carbon[J]. Environmental Pollution & Control,2019,41(1):6-9(in Chinese).
    [31]
    HU H, ZHANG X, WANG T, et al. Bamboo (acidosasa longiligula) shoot shell biochar: its potential application to isolation of uranium(Ⅵ) from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry,2018,316(1):349-362.
    [32]
    施华珍, 刘坤, 汤睿, 等. 有机改性磁性碱性钙基膨润土的制备及对Cu(Ⅱ)和Mn(Ⅱ)的吸附[J]. 化工进展, 2018, 37(11):4509-4521.

    SHI Huazhen, LIU Kun, TANG Rui, et al. Organically modification of magnetic alkaline Ca-bentonite and its adsorption for Cu(Ⅱ) and Mn(Ⅱ)[J]. Chemical Industry and Engineering Progress,2018,37(11):4509-4521(in Chinese).
    [33]
    肖昱, 郭宇, 吴红梅, 等. 氨基功能化介孔硅吸附剂的制备及其对铬(Ⅲ)的吸附行为[J]. 化工进展, 2020, 39(1):257-266.

    XIAO Yu, GUO Yu, WU Hongmei, et al. Adsorption of chromium(Ⅲ) ions with amino functionalized mesoporous silica adsorbent[J]. Chemical Industry and Engineering Progress,2020,39(1):257-266(in Chinese).
    [34]
    杨继利, 潘新革, 孔郑磊, 等. 荔枝皮对重金属Ni 2+的吸附性能[J]. 环境工程学报, 2014, 8(6):2277-2282.

    YANG Jili, PAN Xinge, KONG Zhenlei, et al. Adsorption properties of heavy metal Ni 2+ by litchi pericarp[J]. Chinese Journal of Environmental Engineering,2014,8(6):2277-2282(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (963) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return