Volume 39 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LI Renjun, ZHANG Ling, ZHENG Peiyu. Effect of fused MgAl2O4 on high temperature creep properties of Al2O3-MgAl2O4 refractory[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 285-291. doi: 10.13801/j.cnki.fhclxb.20210310.003
Citation: LI Renjun, ZHANG Ling, ZHENG Peiyu. Effect of fused MgAl2O4 on high temperature creep properties of Al2O3-MgAl2O4 refractory[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 285-291. doi: 10.13801/j.cnki.fhclxb.20210310.003

Effect of fused MgAl2O4 on high temperature creep properties of Al2O3-MgAl2O4 refractory

doi: 10.13801/j.cnki.fhclxb.20210310.003
  • Received Date: 2021-01-22
  • Accepted Date: 2021-02-21
  • Rev Recd Date: 2021-02-09
  • Available Online: 2021-03-10
  • Publish Date: 2022-01-15
  • The Al2O3 bonded MgAl2O4 fire-resistant composites were prepared with tabular alumina and fused magnesia-alumina spinel as raw materials, and phosphoric acid as binder and then sintered at 1680℃. The creep resistance test was conducted at 1500℃ under 0.2 MPa with insulation for 50 h, The specimens after creep resistance test were characterized and analyzed by XRD, SEM and EDS to investigate the effect of adding amount of MgAl2O4 on high temperature creep resistance of Al2O3 bonded MgAl2O4 fire-resistant composites as well as its mechanism. The results show that Al2O3 bonded MgAl2O4 fire-resistant composites has better creep resistance than Al2O3 composite. During the creep test, magnesium-aluminum spinel aggregate will react with alumina matrix to form secondary spinel layer around the spinel particles, which effectively connects the matrix and aggregate and improves the creep resistance of the specimens. During the formation of the secondary spinel layer, due to the higher migration rate of Mg2+ and the higher thickness ratio on both sides of the reaction interface, the Kirkendall effect will be induced, resulting in a large number of vacancies and pores at the interface.

     

  • loading
  • [1]
    王恩会, 陈俊红, 侯新梅. 钢包工作衬用耐火材料的研究现状及最新进展[J]. 工程科学学报, 2019, 41(6):695-708.

    WANG Enhui, CHEN Junhong, HOU Xinmei. Current research and latest developments on refractories used as ladle linings[J]. Chinese Journal of Engineering,2019,41(6):695-708(in Chinese).
    [2]
    MARTINEZ A G, LUZ A P, PANDOLFELLI V C et al. Revisiting CA6 formation in cement-bonded alumina-spinel refractory castables[J]. Journal of the European Ceramic Society,2017,37(15):5023-5034. doi: 10.1016/j.jeurceramsoc.2017.07.003
    [3]
    LONG B, XU G, BUHR A, et al. Fracture behaviour and microstructureof refractory materials for steel ladle purging plugs in the system Al2O3-MgO-CaO[J]. Ceramics International,2017,43(13):9679-9685. doi: 10.1016/j.ceramint.2017.04.141
    [4]
    KO Y C. Role of spinel composition in the slag resistance of Al2O3-spinel and Al2O3-MgO cast-ables[J]. Ceramics International,2002,28(7):805-810. doi: 10.1016/S0272-8842(02)00046-9
    [5]
    ZHANG P X, CHEN A B, GAO S, et al. Trace nanoscale Al2O3 in Al2O3-MgAl2O4 castable for improved thermal shock performance[J]. Ceramics International,2019,45(17):23029-23036. doi: 10.1016/j.ceramint.2019.07.350
    [6]
    GANESH I, BHATTACHARJEE S, MAHAJAN Y R. An efficient MgAl2O4 spinel additive for improved slag erosion and penetration resistance of high-Al2O3 and MgO–C refractories[J]. Ceramics International,2002,28(3):245-253. doi: 10.1016/S0272-8842(01)00086-4
    [7]
    JIN S, HARMUTH H, GRUBER D. Compressive creep testing of refractories at elevated loads—Device, material law and evaluation techniques[J]. Journal of the European Ceramic Society,2014,34(15):4037-4042. doi: 10.1016/j.jeurceramsoc.2014.05.034
    [8]
    张秀华, 李勇, 田志宏, 等. 压蠕变实验方法对硅砖蠕变结果的适应性探究[J]. 硅酸盐学报, 2020, 48(9):1505-1510.

    ZHANG Xiuhua, LI Yong, TIAN Zhihong, et al. Evaluation of creep results of silica brick by creep test method[J]. Journal of the Chinese Ceramic Society,2020,48(9):1505-1510(in Chinese).
    [9]
    DÍAZ L A, TORRECILLAS R. Hot bending strength and creep behaviour at 1000-1400℃ of high alumina refractory castables with spinel, periclase and dolomite additions[J]. Journal of the European Ceramic Society,2009,29(1):53-58. doi: 10.1016/j.jeurceramsoc.2008.05.044
    [10]
    SAMADI S, JIN S S L, GRUBER D, et al. Creep parameter determination of a shaped alumina spinel refractory using statistical analysis[C]//Dannert C. Refractories Enabling High Temperature Technologies. Aachen: ECREF European Centre for Refractories Gemeinnützige GmbH, 2020: 89-93.
    [11]
    国家标准化管理委员会. 致密定形耐火制品体积密度、显气孔率和真气孔率试验方法: GB/T 2997—2000[S]. 北京: 中国标准出版社, 2001.

    Standardization Administration of the People’s Republic of China. Test method for bulk density, apparent porosity and true porosity of dense shaped refractory products: GB/T 2997—2000[S]. Beijing: Standards Press of China, 2001(in Chinese).
    [12]
    国家标准化管理委员会. 耐火材料常温耐压强度试验方法: GB/T 5072—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Refractories-Determination of cold compressive strength: GB/T 5072—2008[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [13]
    国家标准化管理委员会. 耐火材料压蠕变试验方法: GB/T 5073—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Refractory products-Test method of creep in compression: GB/T 5073—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [14]
    KO Y C, LAY J T. Thermal expansion characteristics of alumina-magnesia and alumina-spinel castables in the temperature range 800-1 650℃[J]. Journal of the American Ceramic Society,2000,83(11):2872-2874.
    [15]
    戴亚洁, 李亚伟, 金胜利. 耐火材料力学行为表征方法研究进展[J]. 硅酸盐学报, 2019, 47(8):1089-1094.

    DAI Yajie, LI Yawei JIN Shengli. Review on characterization methods for mechanical behavior of refractory materials[J]. Journal of the Chinese Ceramic Society,2019,47(8):1089-1094(in Chinese).
    [16]
    TONG Shanghao, LI Yong, ZHAO Jizeng, et al. Effect of Al addition on creep resistance of MgO-Al2O3 composite for sliding plate at 1400℃[J]. Ceramics International,2017,43(15):11610-11615. doi: 10.1016/j.ceramint.2017.05.330
    [17]
    IBRAM G. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications[J]. International Materials Reviews,2013,58(2):63-112. doi: 10.1179/1743280412Y.0000000001
    [18]
    仝尚好, 李勇, 焦智宇, 等. MgO 与 Al2O3对Al–MgO–Al2O3体系中 MgAlON 形成机理的影响[J]. 硅酸盐学报, 2019, 47(12):1746-1751.

    TONG Shanghao, LI Yong, JIAO Zhiyu, et al. Effect of MgO and Al2O3 on formation of MgAlON in Al–MgO–Al2O3 composites[J]. Journal of the Chinese Ceramic Society,2019,47(12):1746-1751(in Chinese).
    [19]
    李楠, 顾华志, 赵惠忠. 耐火材料学[M]. 北京: 冶金工业出版社, 2012: 195.

    LI Nan, GU Huazhi, ZHAO Huizhong. Refractories[M]. Beijing: Metallurgical Industry Press, 2012: 195(in Chinese).
    [20]
    SAKO E Y, PANDOLFELLI V C, ZINNGREBE E, et al. Fundamentals and applications on in situ spinel formation mechanisms in Al2O3-MgO refractory castables[J]. Ceramics International,2012,38(3):2243-2251. doi: 10.1016/j.ceramint.2011.10.074
    [21]
    RIGAUD M, BUHR A, PARR C, et al. Spinel-containing alumina-based refractory castables[J]. Ceramics International,2011,37(6):1705-1724. doi: 10.1016/j.ceramint.2011.03.049
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (790) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return