Volume 39 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
ZHU Deju, LI Xinliang, LI Anling. Influence of warp and weft fiber volume fractions on tensile mechanical properties of alkali-resistant glass textile reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 322-334. doi: 10.13801/j.cnki.fhclxb.20210306.002
Citation: ZHU Deju, LI Xinliang, LI Anling. Influence of warp and weft fiber volume fractions on tensile mechanical properties of alkali-resistant glass textile reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 322-334. doi: 10.13801/j.cnki.fhclxb.20210306.002

Influence of warp and weft fiber volume fractions on tensile mechanical properties of alkali-resistant glass textile reinforced concrete

doi: 10.13801/j.cnki.fhclxb.20210306.002
  • Received Date: 2021-01-15
  • Accepted Date: 2021-02-26
  • Rev Recd Date: 2021-02-15
  • Available Online: 2021-03-08
  • Publish Date: 2022-01-15
  • In order to study the influence of the warp and weft fiber volume fractions on the tensile mechanical properties of alkali-resistant glass textile reinforced concrete (ARG-TRC), quasi-static tensile tests were conducted on specimens with various volume fractions of warp yarn (0.24vol%, 0.49vol%, 0.73vol% and 1.09vol%) and weft yarn (0vol%, 0.20vol%, 0.48vol% and 0.96vol%) by a universal testing machine, and the crack strain distribution was obtained by digital image correlation (DIC) method. The results show that the tensile mechanical properties and failure modes of ARG-TRC mainly depend on the volume fractions of warp yarn, and the volume fractions of weft yarn do not show obvious effect. With the increase of the volume fractions of the warp yarn, the ultimate strength, peak strain and toughness increase significantly as well as the number of cracks. A trilinear model was obtained by fitting the experimental tensile stress-strain curves, and was compared with the ACK model. The crack-spacing calculation formula was modified based on the existing crack-spacing calculation model and experimental data, which show good consistency with the literature data. The findings will be helpful for the optimization of the configuration of textile in textile reinforced concrete (TRC), and for the improvement of the utilization efficiency of textiles, and be available for the performance design of TRC.

     

  • loading
  • [1]
    MECHTCHERINE, VIKTOR. Novel cement-based composites for the strengthening and repair of concrete structures[J]. Construction and Building Materials,2013,41:365-373. doi: 10.1016/j.conbuildmat.2012.11.117
    [2]
    TRUONG B T, BUI T T, LIMAM A, et al. Experimental investigations of reinforced concrete beams repaired/reinforced by TRC composites[J]. Composite Structures,2017,168:826-839. doi: 10.1016/j.compstruct.2017.02.080
    [3]
    ORTLEPP R, ORTLEPP S. Textile reinforced concrete for strengthening of RC columns: A contribution to resource conservation through the preservation of structures[J]. Construction and Building Materials,2017,132:150-160. doi: 10.1016/j.conbuildmat.2016.11.133
    [4]
    XU G, HANNANT D J. Flexural behaviour of combined polypropylene network and glass fibre reinforced cement[J]. Cement and Concrete Composites,1992,14(1):51-61. doi: 10.1016/0958-9465(92)90039-X
    [5]
    艾珊霞, 尹世平, 徐世烺. 纤维编织网增强混凝土的研究进展及应用[J]. 土木工程学报, 2015, 48(1):27-40.

    AI S X, YIN S P, XU S L. A review on the development of research and application of textile reinforced concrete[J]. China Civil Engineering Journal,2015,48(1):27-40(in Chinese).
    [6]
    DU Y, ZHANG M, ZHOU F, et al. Experimental study on basalt textile reinforced concrete under uniaxial tensile loading[J]. Construction and Building Materials,2017,138:88-100. doi: 10.1016/j.conbuildmat.2017.01.083
    [7]
    BRAMESHUBER W. Report 36: Textile reinforced concrete-state-of-the-art report of RILEM TC 201-TRC[M]. Bagneux: RILEM Publications, 2006, 134-135.
    [8]
    SILVA F d A, BUTLER M, MECHTCHERINE V, et al. Strain rate effect on the tensile behaviour of textile-reinforced concrete under static and dynamic loading[J]. Materials Science and Engineering A,2011,528(3):1727-1734. doi: 10.1016/j.msea.2010.11.014
    [9]
    SORANAKOM C, MOBASHER B. Modeling of tension stiffening in reinforced cement composites: Part I. Theoretical modeling[J]. Materials and Structures,2010,43(9):1217-1230. doi: 10.1617/s11527-010-9594-8
    [10]
    PELED A, COHEN Z, PASDER Y, et al. Influences of textile characteristics on the tensile properties of warp knitted cement based composites[J]. Cement and Concrete Composites,2008,30(3):174-183. doi: 10.1016/j.cemconcomp.2007.09.001
    [11]
    GOPINATH S, GETTU R, IYER N R. Influence of prestressing the textile on the tensile behaviour of textile reinforced concrete[J]. Materials and Structures,2018,51:64.
    [12]
    尹世平, 徐世烺. 纤维编织网增强混凝土的拉伸力学模型[J]. 复合材料学报, 2012, 29(5):222-229.

    YIN S P, XU S L. Tensile mechanical model of textile reinforced concrete[J]. Acta Materiae Compositae Sinica,2012,29(5):222-229(in Chinese).
    [13]
    HEGGER J, WILL N, BRUCKERMANN O, et al. Load-bearing behaviour and simulation of textile reinforced concrete[J]. Materials and Structures,2006,39(8):765-776. doi: 10.1617/s11527-005-9039-y
    [14]
    YAO Y, SILVA F A, BUTLER M, et al. Tension stiffening in textile-reinforced concrete under high speed tensile loads[J]. Cement and Concrete Composites,2015,64:49-61. doi: 10.1016/j.cemconcomp.2015.07.009
    [15]
    ZHU D, LIU S, YAO Y, et al. Effects of short fiber and pre-tension on the tensile behavior of basalt textile reinforced concrete[J]. Cement and Concrete Composites,2019,96:33-45. doi: 10.1016/j.cemconcomp.2018.11.015
    [16]
    YAO Y, BONAKDAR A, FABER J, et al. Distributed cracking mechanisms in textile-reinforced concrete under high speed tensile tests[J]. Materials and Structures,2016,49(7):2781-2798. doi: 10.1617/s11527-015-0685-4
    [17]
    LIOR N, EREZ G, ALVA P. Tensile behavior of fabric-cement-based composites reinforced with non-continuous load bearing yarns[J]. Construction and Building Materials,2020,236:117432. doi: 10.1016/j.conbuildmat.2019.117432
    [18]
    COLOMBO I G, MAGRI A, ZANI G, et al. Textile reinforced concrete: Experimental investigation on design parameters[J]. Materials and Structures,2013,46(11):1933-1951. doi: 10.1617/s11527-013-0017-5
    [19]
    PELED A, BENTUR A, YANKELEVSKY D. Effects of woven fabric geometry on the bonding performance of cementitious composites[J]. Advanced Cement Based Materials,1998,7(1):20-27. doi: 10.1016/S1065-7355(97)00012-6
    [20]
    徐世烺, 阎轶群. 低配网率纤维编织网增强混凝土轴拉力学性能[J]. 复合材料学报, 2011, 28(5):206-213.

    XU S L, YAN Y Q. Mechanical properties of textile reinforced concrete plate at low textile ratios[J]. Acta Materiae Compositae Sinica,2011,28(5):206-213(in Chinese).
    [21]
    朱德举, 李高升. 短切纤维及预应力对玄武岩织物增强水泥基复合材料拉伸力学性能的影响[J]. 复合材料学报, 2017, 34(11):2631-2641.

    ZHU D J, LI G S. Effect of short fibers and prestress on the tensile mechanical properties of bas-alt textile reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(11):2631-2641(in Chinese).
    [22]
    沈荣熹, 崔琪, 李清海. 新型纤维增强水泥基复合材料[M]. 北京: 中国建材工业出版社, 2004, 66-71.

    SHEN R X, CUI Q, LI Q H. New type fiber reinforced cement based composites[M]. Beijing: China Building Materials Press, 2004, 66-71(in Chinese).
    [23]
    CAGGEGI C, LANOYE E, DJAMA K, et al. Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios[J]. Composites Part B: Engineering,2017,130:90-102. doi: 10.1016/j.compositesb.2017.07.027
    [24]
    OHNO S, HANNANT D J. Modeling the stress-strain response of continuous fiber reinforced cement composites[J]. ACI Materials Journal,1994,91(3):306-312.
    [25]
    BLABER J, ADAIR B, ANTONIOU A. Ncorr: Open-source 2D digital image correlation matlab software[J]. Experimental Mechanics,2015,55(6):1105-1122. doi: 10.1007/s11340-015-0009-1
    [26]
    FILIPPOU C A, CHRYSOSTOMOU C Z. Analytical model for textile reinforced mortar under monotonic loading[J]. Construction and Building Materials,2020,258:120178. doi: 10.1016/j.conbuildmat.2020.120178
    [27]
    European Committee for Standardization. Design of concrete structures: General rules and rules for buildings: EN1992-1-1.2004[S]. Brussels: CEN, 2004.
    [28]
    CONTAMINE R, LARBI A S, HAMELIN P. Contribution to direct tensile testing of textile reinforced concrete (TRC) composites[J]. Materials Science and Engineering A,2011,528(29-30):8589-8598. doi: 10.1016/j.msea.2011.08.009
    [29]
    MOBASHER B, PELED A, PAHILAJANI J. Distributed cracking and stiffness degradation in fabric-cement composites[J]. Materials and Structures,2006,39(3):317-331.
    [30]
    PELED A, MOBASHER B. Tensile behavior of fabric cement-based composites: Pultruded and cast[J]. Journal of Materials in Civil Engineering,2007,19(4):340-348. doi: 10.1061/(ASCE)0899-1561(2007)19:4(340)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Article Metrics

    Article views (614) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return