Volume 38 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
HOU Lingmei, MENG Hongfu, ZHAO Tiaobin, et al. Preparation and properties of erythromycin molecularly imprinted polymer with auxiliary properties[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1754-1766. doi: 10.13801/j.cnki.fhclxb.20201223.002
Citation: HOU Lingmei, MENG Hongfu, ZHAO Tiaobin, et al. Preparation and properties of erythromycin molecularly imprinted polymer with auxiliary properties[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1754-1766. doi: 10.13801/j.cnki.fhclxb.20201223.002

Preparation and properties of erythromycin molecularly imprinted polymer with auxiliary properties

doi: 10.13801/j.cnki.fhclxb.20201223.002
  • Received Date: 2020-05-28
  • Accepted Date: 2020-07-03
  • Available Online: 2020-12-23
  • Publish Date: 2021-06-23
  • In order to better isolate or degrade erythromycin, and finally improve the ability to deal with residual erythromycin. Magnetic Fe3O4@polyacrylic acid (Fe3O4@PAA) erythromycin molecularly imprinted polymer (ERYMIP) and photodegradation TiO2@polyacrylic acid erythromycin molecularly imprinted polymer (TiO2@PAA ERYMIP) were prepared, respectively. Scanning electron microscope (SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysisand (TG) and magnetic hysteresis loop (MHL) were used to characterize the morphology and structure of the imprinted polymers. Experimental results show that Fe3O4@PAA ERYMIP has superparamagnetic properties and TiO2@PAA ERYMIP has photodegradation performance. The maximum adsorption capacity of Fe3O4@PAA ERYMIP and TiO2@PAA ERYMIP are 958.4 mg·g−1 and 1170.2 mg·g−1, respectively. They have good selectivity compared with other antibiotics. Isothermal adsorption studies find that both Fe3O4@PAA ERYMIP and TiO2@PAA ERYMIP are consistent with Langmuir model. The kinetic studies find that the adsorption processes of Fe3O4@PAA ERYMIP and TiO2@PAA ERYMIP conform to the quasi-secondary and quasi-primary models, respectively.

     

  • loading
  • [1]
    郗日沫, 万宇平, 冯才伟, 等. 红霉素药物残留检测技术的研究进展[J]. 四川畜牧兽医, 2010, 3:31-33. doi: 10.3969/j.issn.1001-8964.2010.06.013

    XI R M, WAN Y P, FENG C W. Research progress of erythromycin residue detection technology[J]. Sichuan Animal Husbandry Veterinary,2010,3:31-33(in Chinese). doi: 10.3969/j.issn.1001-8964.2010.06.013
    [2]
    翟军民. 阿奇霉素与红霉素治疗儿童支原体肺炎的疗效比较[J]. 中外医学研究, 2011, 17:29-30. doi: 10.3969/j.issn.1674-6805.2011.35.021

    ZHAI J M. Comparison of efficacy of azithromycin and erythromycin in the treatment of mycoplasma pneumonia in children[J]. Chinese and Foreign Medical Research,2011,17:29-30(in Chinese). doi: 10.3969/j.issn.1674-6805.2011.35.021
    [3]
    YONG-HAK K, KYUNGRAN P, JAIRAJ V, et al. Mineralization of erythromycin A in aqua-culture sediments[J]. FEMS Microbiology Letters,2004,234:169-175. doi: 10.1111/j.1574-6968.2004.tb09529.x
    [4]
    孙安志, 温红霞, 王晓辉. 红霉素对生物膜内铜绿假单胞菌的影响[J]. 陕西医学杂志, 2014, 8:1036-1038. doi: 10.3969/j.issn.1000-7377.2014.08.047

    SUN A Z, WEN H X, WANG X H. Effects of erythromycin on pseu-domonas aeruginosa in biofilm[J]. Journal of Shaanxi Medical Science,2014,8:1036-1038(in Chinese). doi: 10.3969/j.issn.1000-7377.2014.08.047
    [5]
    TOMISLAV L, GORJANA R, SLOBODAN D. Erythromycin VI: Kinetics of acid-catalyzed hydrolysis of erythromycin oxime and erythromycylamine[J]. Journal of Pharmaceutical Sciences,1978,67(7):1031-1033. doi: 10.1002/jps.2600670747
    [6]
    DANIELLE B L, AZIZA K G, ELAINE V, et al. Identification of degradation products of erythromycin a arising from ozone and advanced oxidation process treatment[J]. Water Environment Research,2010,82(9):798-805.
    [7]
    CAI Z, DENG X, WANG Q, et al. Core-shell granular activated carbon and its adsorption of trypan blue[J]. Journal of Cleaner Production,2020,242:118496. doi: 10.1016/j.jclepro.2019.118496
    [8]
    LU L, SAMARASEKERA C, YEOW J. Creatinine adsorption capacity of electrospun polyac-rylonitrile (PAN)-zeolite nanofiber membranes for potential artificial kidney applications[J]. Journal of Applied Polymer Science,2015,132:1-8.
    [9]
    DAMKHI A M, AMEERI R S, JEFFREYS G V. Optimal separation of n-paraffins from Kuwait kerosene using a molecular sieve adsorbent[J]. Journal of Chemical Technology & Biotechnology,1987,37:215-228.
    [10]
    NAZMUL A K, ZUBAIR H, SUNG H J. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs)[J]. Journal of Hazardous Materials, Journal of Hazardous Materials,2013,244-245:444-456. doi: 10.1016/j.jhazmat.2012.11.011
    [11]
    ESMAS S, RECEP Ü, MEMED D, et al. Fabrication of surface plasmon resonance nanosensor for the selective determination of erythromycin via molecular imprinted nanoparticles[J]. Talanta,2016,150:607-614. doi: 10.1016/j.talanta.2015.12.043
    [12]
    LIN Z, SUN L, LIU W, et al. Synthesis of boronic acid-functionalized molecularly imprinted silica nanoparticles for glycoprotein recognition and enrichment[J]. Journal of Materials Chemistry B, 2014, 2(6): 637-643.
    [13]
    YELIZ A, ADEM Z. A molecularly imprinted whatman paper for clinical detection of pro-pranolol[J]. Sensors and Actuators B: Chemical,2020,304:127276. doi: 10.1016/j.snb.2019.127276
    [14]
    ROBERTO F, ALESSANDRO D M, MARIA C, et al. Preferential removal of pesticides from water by molecular imprinting on TiO2 photo-catalysts[J]. Chemical Engineering Journal,2020,379:122309-122322. doi: 10.1016/j.cej.2019.122309
    [15]
    LI X T, WAN J Q, WANG Y, et al. Selective removal and persulfate catalytic decomposition of diethyl phthalate from contaminated water on modified MIL100 through surface molecular imprinting[J]. Chemosphere,2020,240:124875-124883. doi: 10.1016/j.chemosphere.2019.124875
    [16]
    XIAO Y H, XIAO RANG J. Preparation and adsorption properties of molecularly imprinted polymer via RAFT precipitation polymerization for selective removal of aristolochic acid I[J]. Talanta,2016,162:415-422.
    [17]
    ARCHANA K, NEHA G, JUHI S. Development of highly sensitive and selective sensor for ethionamide guided by molecular modelling via electropolymerized molecularly imprinted films[J]. Microchemical Journal,2020,152:104355-104365. doi: 10.1016/j.microc.2019.104355
    [18]
    OU H X, CHEN Q H, PAN J M, et al. Selective removal of erythromycin by magnetic imprinted polymers synthesized from chitosan-stabilized Pickering emulsion[J]. Journal of Hazardous Materials,2015,289:28-37.
    [19]
    ZHU Y Z, JIANG D Y, SUN D S, et al. Fabrication of magnetic imprinted sorbents prepared by Pickering emulsion polymerization for adsorption of erythromycin from aqueous solution[J]. Journal of Environmental Chemical Engineering,2016,4:3570-3579. doi: 10.1016/j.jece.2016.07.036
    [20]
    寇星, 耿立媛, 雷建都, 等. 红霉素分子印迹聚合物纳米微球的制备及其吸附特性[J]. 过程工程学报, 2011, 3(11):481-486.

    KOU X, GENG L Y, LEI J D, et al. Preparation and adsorption characteristics of erythromycin molecularly imprinted polymer nanospheres[J]. Journal of Process Engineering,2011,3(11):481-486(in Chinese).
    [21]
    HOU L M, HAN X Q, WANG N. High performance of molecularly imprinted polymer for the selective adsorption of erythromycin in water[J]. Colloid and Polymer Science,2020,298:1023-1033. doi: 10.1007/s00396-020-04660-1
    [22]
    WANG N, XIAO S J, SU C W. Preparation of molecularly imprinted polymer for methylene blue and study on its molecular recognition mechanism[J]. Colloid and Polymer Science,2016,294(8):1305-1314, 2016. doi: 10.1007/s00396-016-3895-6
    [23]
    朱丽丽. 基于磁性分子印迹纳米粒子的电化学传感器的制备及应用[D]. 无锡: 江南大学, 2014.

    ZHU L L. Preparation and application of electrochemical sensors based on magnetic molecularly imprinted nanoparticles[D]. Wuxi: Jiangnan University, 2014(in Chinese).
    [24]
    郭静. 二氧化钛的功能化改性及其光催化性能研究[D]. 福州: 福建师范大学, 2014.

    GUO J. Functional modification of titanium dioxide and its photocatalytic properties[D]. Fuzhou: Fujian Normal University, 2014(in Chinese).
    [25]
    BAO L L, MENG M J, SUN K Y, et al. Selective adsorption and degradation of rhodamine B with modified titanium dioxide photocatalyst[J]. Journal of Applied Polymer Science,2014,131:40890-40902.
    [26]
    SHEN X T, ZHU L H, HUANG C X, et al. Inorganic molecular imprinted titanium dioxide photocatalyst: Synthesis, characterization and its application for efficient and selective degradation of phthalate esters[J]. Journal of Materials Chemistry,2009,19:4843-4851. doi: 10.1039/b900196d
    [27]
    SAQUIB M, TARIQ M A, FAISALl M, et al. Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide[J]. Desalination,2008,219(1):301-311.
    [28]
    METANAWIN T, METANAWIN S. The photo-catalytic degradation of organic dyes in the nanotitanium dioxide-polyester based nonwoven fibers[J]. Materials Today Proceedings,2018,5(3):9658-9665. doi: 10.1016/j.matpr.2018.01.134
    [29]
    ZHANG C J, YANG Z P, ZHANG C X, et al. Kinetics of photocatalytic degradation of atra-zine on molecularly imprinted titania film[J]. Asia-Pacific Journal of Chemical Engineering,2013,8:318-322. doi: 10.1002/apj.1662
    [30]
    ZHOU Y S, ZHOU T T, JIN H, et al. Rapid and selective extraction of multiple macrolide anti-biotics in foodstuff samples based on magnetic molecularly imprinted polymers[J]. Talanta,2015,137:1-10. doi: 10.1016/j.talanta.2015.01.008
    [31]
    GENG L Y, KOU X, LEI G D, et al. Preparation, characterization and adsorption performance of molecularly imprinted microspheres for erythromycin using suspension polymerization[J]. Journal of Chemical Technology & Biotechnology,2012,87:635-642.
    [32]
    LIU J, LI L, TANG H, et al. Preparation and characterization of erythromycin molecularly imprinted polymers based on distillation-precipitation polymerization[J]. Journal of Separation Science,2015,38:3103-3109. doi: 10.1002/jssc.201500448
    [33]
    DE OLIVEIRA H L, PIRES B C, TEIXEIRA L S, et al. Mesoporous molecularly imprinted polymer for removal of hormones from aqueous medium[J]. Colloids and Surfaces A,2020,590:124506-124518. doi: 10.1016/j.colsurfa.2020.124506
    [34]
    TOUDESHKI R M, DADFARNIA S, HAJI SHABANI A M, et al. Surface molecularly imprinted polymer on magnetic multi-walled carbon nanotubes for selective recognition and preconcentration of metformin in biological fluids prior to its sensitive chemiluminescence determination: Central composite design optimization[J]. Analytica Chimica Acta,2019,1089:78-89. doi: 10.1016/j.aca.2019.08.070
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(9)

    Article Metrics

    Article views (922) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return