Volume 38 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
LI Tianshu, WANG Shaokai, GU Yizhuo, et al. Structure adjustment and properties of carbon nanotube film interlaminar modified carbon fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1784-1794. doi: 10.13801/j.cnki.fhclxb.20201118.001
Citation: LI Tianshu, WANG Shaokai, GU Yizhuo, et al. Structure adjustment and properties of carbon nanotube film interlaminar modified carbon fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1784-1794. doi: 10.13801/j.cnki.fhclxb.20201118.001

Structure adjustment and properties of carbon nanotube film interlaminar modified carbon fiber/bismaleimide composites

doi: 10.13801/j.cnki.fhclxb.20201118.001
  • Received Date: 2020-08-03
  • Accepted Date: 2020-11-12
  • Available Online: 2020-11-19
  • Publish Date: 2021-06-23
  • The interlayer structure adjusting methods were studied on carbon fiber (CF)/bismaleimide composite materials, conducted respectively by thermoplastic interlaminar toughening and carbon nanotube (CNT) film hybridizing in contrast. The changes of compression properties, dynamic mechanical properties, electrical conductivities and electromagnetic shielding properties of the modified CF composites were analyzed. The results show that thermal compaction processing reduces the thickness of the CNT film significantly, suppressing the local resin-rich of the interlayer CNT region. The compressive strengths of the CNT film-CF hybrid composites are improved, with the fracture morphologies obviously different from that of the CF composites. In comparison, the thermoplastic interlaminar toughened CF composites show much lower compression strengths than the CNT film/CF hybrid composites. Additionally, the interlaminar electrical conductive paths are penetrated by the CNT networks of the hybrid composites, hence the thickness direction conductivities are increased by 3 orders of magnitude. However, the volumetric electrical conductivities of the diverse hybrid composites exhibit an evident “Cannikin Law”. It is noteworthy that the CNT film interlaminar hybrid can dramatically improve the electromagnetic shielding properties of the CF composite, reaching up to 90 dB for the dense CNT film hybrid composite.

     

  • loading
  • [1]
    AHMAD F, YUVARAJ N, BAJPAI P K. Effect of reinforcement architecture on the macroscopic mechanical properties of fiberous polymer composites: A review[J]. Polymer Composites,2020,41(6):2518-2534. doi: 10.1002/pc.25666
    [2]
    CHOI D, KIL H S, LEE S. Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies[J]. Carbon,2019,142:610-649. doi: 10.1016/j.carbon.2018.10.028
    [3]
    LI Z, HAIGH A, SOUTIS C, et al. Principles and applications of microwave testing for woven and non-noven carbon fibre-reinforced polymer composites: A topical review[J]. Applied Composite Materials,2018,25(4):965-982. doi: 10.1007/s10443-018-9733-x
    [4]
    LIU L, JIA C, HE J, et al. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites[J]. Composites Science and Technology,2015,121:56-72. doi: 10.1016/j.compscitech.2015.08.002
    [5]
    WANG B, MA S, YAN S, et al. Readily recyclable carbon fiber reinforced composites based on degradable thermosets: A review[J]. Green Chemistry,2019,21(21):5781-5796. doi: 10.1039/C9GC01760G
    [6]
    WANG J, MA C, CHEN G, et al. Interlaminar fracture toughness and conductivity of carbon fiber/epoxy resin compo-site laminate modified by carbon black-loaded polypropylene non-woven fabric interleaves[J]. Composite Structures,2020,234:111649. doi: 10.1016/j.compstruct.2019.111649
    [7]
    SHRIVASTAVA R, SINGH K K. Interlaminar fracture toughness characterization of laminated composites: A review[J]. Polymer Reviews,2019:1-52.
    [8]
    CHENG C, CHEN Z, HUANG Z, et al. Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105696. doi: 10.1016/j.compositesa.2019.105696
    [9]
    RAMANATHAN T, ABDALA A A, STANKOVICH S, et al. Functionalized graphene sheets for polymer nanocompo-sites[J]. Nature Nanotechnology,2008,3(6):327-331. doi: 10.1038/nnano.2008.96
    [10]
    MACOSKO C. Graphene/polymer nanocomposites[J]. Macromolecules,2015,43(16):6515-6530.
    [11]
    IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0
    [12]
    THOSTENSON E T, LI W Z, WANG D Z, et al. Carbon nano-tube/carbon fiber hybrid multiscale composites[J]. Journal of Applied Physics,2002,91(9):6034. doi: 10.1063/1.1466880
    [13]
    SHIN Y C, LEE W I, KIM H S. Mode II interlaminar fracture toughness of carbon nanotubes/epoxy film-interleaved carbon fiber composites[J]. Composite Structures,2020,236:111808. doi: 10.1016/j.compstruct.2019.111808
    [14]
    NI X, FURTADO C, KALFON-COHEN E, et al. Static and fatigue interlaminar shear reinforcement in aligned carbon nanotube-reinforced hierarchical advanced compo-sites[J]. Composites Part A: Applied Science and Manufacturing,2019,120:106-115. doi: 10.1016/j.compositesa.2019.02.023
    [15]
    ZENG Y, CI L, CAREY B J, et al. Design and reinforcement: Vertically aligned carbon nanotube-based sandwich composites[J]. ACS Nano,2010,4(11):6798-6804. doi: 10.1021/nn101650p
    [16]
    WANG S, DOWNES R, YOUNG C, et al. Carbon fiber/carbon nanotube buckypaper interply hybrid composites: Manufacturing process and tensile properties[J]. Advanced Engineering Materials,2015,17(10):1442-1453. doi: 10.1002/adem.201500034
    [17]
    GARCIA E J, WARDLE B L, HART A J. Joining prepreg composite interfaces with aligned carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing,2008,39(6):1065-1070.
    [18]
    GARCIA E J, WARDLE B L, HART A J, et al. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ[J]. Composites Science and Technology,2008,68(9):2034-2041. doi: 10.1016/j.compscitech.2008.02.028
    [19]
    XU H, TONG X, ZHANG Y, et al. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves[J]. Composites Science and Technology,2016,127(28):113-118.
    [20]
    刘刚, 胡晓兰, 张朋, 等. 碳纳米管膜层间改性碳纤维/环氧树脂复合材料[J]. 高分子学报, 2013, 10:109-115.

    LIU G, HU X L, ZHANG P, et al. Carbon nanotube film interlayer toughened carbon fiber reinforced epoxy resin hybrid composites[J]. Acta Polymerica Sinica,2013,10:109-115(in Chinese).
    [21]
    刘玲, 杨乔馨. 碳纳米管网格对碳纤维复合材料层间剪切性能的影响[J]. 固体力学学报, 2015, s1:80-84.

    LIU L, YANG Q X. Effect of carbon nanotube networks on the interlaminar shear performance of carbon fiber reinforced laminates[J]. Chinese Journel of Solid Mechanics,2015,s1:80-84(in Chinese).
    [22]
    邓火英, 王立敏, 冯奕钰, 等. 碳纳米管膜层间增韧对碳纤维复合材料力学性能的影响[J]. 宇航材料工艺, 2015, 5:31-35. doi: 10.3969/j.issn.1007-2330.2015.04.007

    DENG H Y, WANG L M, FENG Y Y, et al. Effect of carbon nanotube film interlayer toughening on mechanical properties of carbon fiber reinforced composite[J]. Aerospace Materials & Technology,2015,5:31-35(in Chinese). doi: 10.3969/j.issn.1007-2330.2015.04.007
    [23]
    PAN J, LI M, WANG S, et al. Hybrid effect of carbon nano-tube film and ultrathin carbon fiber prepreg composites[J]. Journal of Reinforced Plastics and Compo-sites,2017,36(6):452-463. doi: 10.1177/0731684416684020
    [24]
    MIKHALCHAN A, RIDHA M, TAY T E. Carbon nanotube fibres for CFRP-hybrids with enhanced in-plane fracture behaviour[J]. Materials & Design,2018,143:112-119.
    [25]
    LEE J, STEIN I Y, KESSLER S S, et al. Aligned carbon nano-tube film enables thermally induced state transformations in layered polymeric materials[J]. ACS Applied Materials & Interfaces,2015,7(16):8900-8905.
    [26]
    VILLORIA R G D, YAMAMOTO N, MIRAVETE A, et al. Multi-physics damage sensing in nano-engineered structural composites[J]. Nanotechnology,2011,22(18):185502. doi: 10.1088/0957-4484/22/18/185502
    [27]
    RAWAL S, BRANTLEY J, KARABUDAK N. Development of carbon nanotube-based composite for spacecraft components[C]. 2013 6th International Conference on Recent Advances in Space Technologies (RAST), IEEE, 2013.
    [28]
    LIU Y N, LI M, GU Y, et al. Ultrastrong carbon nanotube/bismaleimide composite film with super-aligned and tightly packing structure[J]. Composites Science and Technology,2015,117:176-182. doi: 10.1016/j.compscitech.2015.06.014
    [29]
    LI T, LI M, GU Y, et al. Mechanical enhancement effect of the interlayer hybrid CNT film/carbon fiber/epoxy composite[J]. Composites Science and Technology,2018,166:176-182. doi: 10.1016/j.compscitech.2018.02.007
    [30]
    ZOU J, ZHANG X, ZHAO J, et al. Strengthening and toughening effects by strapping carbon nanotube cross-links with polymer molecules[J]. Composites Science and Technology,2016,135:123-127. doi: 10.1016/j.compscitech.2016.09.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (1101) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return