Volume 38 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
WANG Shige, XU Xia, CHEN Yongkang, et al. Preparation of multifunctional polyvinyl alcohol microspheres by electrospinning and its properties and application[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1960-1973. doi: 10.13801/j.cnki.fhclxb.20200928.002
Citation: WANG Shige, XU Xia, CHEN Yongkang, et al. Preparation of multifunctional polyvinyl alcohol microspheres by electrospinning and its properties and application[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1960-1973. doi: 10.13801/j.cnki.fhclxb.20200928.002

Preparation of multifunctional polyvinyl alcohol microspheres by electrospinning and its properties and application

doi: 10.13801/j.cnki.fhclxb.20200928.002
  • Received Date: 2020-07-16
  • Accepted Date: 2020-09-27
  • Available Online: 2020-09-28
  • Publish Date: 2021-06-23
  • In this paper, MnO2-polydopamine (PDA)/polyvinyl alcohol (PVA) and MnO2-PVA-5-fluorouracil (5-Fu)/PVA composite microspheres were prepared by electrospinning. Specifically, dopamine (DA) and KMnO4 were added to the PVA solution, where a redox reaction happened between DA and KMnO4 to form PDA and MnO2. Thus, the MnO2-PDA/PVA microspheres were prepared by electrospinning the MnO2-PDA/PVA solution. MnO2-PDA-5-Fu/PVA microspheres were prepared by electrospinning the MnO2-PDA-5-Fu/PVA solution, which was prepared by directly dissolving 5-Fu in the MnO2-PDA/PVA solution. The water stability of the electrospun microspheres was given by a glutaraldehyde crosslinking method. The composite microspheres have excellent photothermal conversion, controlled drug release and good biosafety, which were used to prevent the recurrence of tumor after the operation. The photothermal conversion efficiency of MnO2-PDA-5-Fu/PVA microspheres reaches 24.5% under the irradiation of 808 nm NIR laser, which can achieve the efficient tumor thermal ablation; on the other hand, the released 5-Fu can kill the residual tumor cells after operation. This study confirms the application potential of the microspheres in the field of preventing tumor recurrence, and provides a new strategy for the design of multifunctional composite nanomaterials.

     

  • loading
  • [1]
    ABAZARI M F, NEJATI F, NASIRI N, et al. Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nano-fibers accelerates osteogenic differentiation and bone reconstruction[J]. Gene,2019,720:144096. doi: 10.1016/j.gene.2019.144096
    [2]
    ZHU H J, CHENG P H, CHEN P, et al. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics[J]. Biomaterials Science,2018,6(4):746-765. doi: 10.1039/C7BM01210A
    [3]
    NADEM S, ZIYADI H, HEKMATI M, et al. Cross-linked poly(vinyl alcohol) nanofibers as drug carrier of clindamycin[J]. Polymer Bulletin,2019,123:68-82.
    [4]
    XIE C C, DING R, WANG X Y, et al. A disulfiram-loaded electrospun poly(vinylidene fluoride) nanofibrous scaffold for cancer treatment[J]. Nanotechnology,2020,31(11):115101. doi: 10.1088/1361-6528/ab5b35
    [5]
    LIU Y Y, XI Y X, ZHAO J L, et al. Preparation of therapeutic-laden konjac hydrogel for tumor combination therapy[J]. Chemical Engineering Journal,2019,375:122048. doi: 10.1016/j.cej.2019.122048
    [6]
    黄红娜, 张丹参, 张力, 等. 纳米药物载体系统的研究[J]. 河北北方学院学报(医学版), 2010, 27(2):69-71.

    HUANG Hongna, ZHANG Danshen, ZHANG Li, et al. Study on nanoparticle drug carrier system[J]. Journal of Hebei North University (Medical Edition),2010,27(2):69-71(in Chinese).
    [7]
    金丽霞. 纳米药物载体的研究及临床应用[J]. 中国组织工程研究与临床康复, 2010, 14(8):1429-1432.

    JIN lixia. Research and clinical application of nano-drug carriers[J]. Journal of Clinical Rehabilitative Tissue En-gineering Research,2010,14(8):1429-1432(in Chinese).
    [8]
    LV H, TANG D, SUN Z, et al. Electrospun PCL-based polyurethane/HA microfibers as drug carrier of dexamethasone with enhanced biodegradability and shape memory performances[J]. Colloid and Polymer Science,2020,298(1):103-111. doi: 10.1007/s00396-019-04568-5
    [9]
    YU Y, FENG R, LI J, et al. A hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier ocular drug delivery platform[J]. Asian Journal of Pharmaceutical Sciences,2019,14(4):423-434.
    [10]
    XIAO J, CHENG L, FANG T, et al. Nanoparticle-embedded electrospun fiber–covered stent to assist intraluminal photodynamic treatment of oesophageal cancer[J]. Small,2019,15(49):1904979. doi: 10.1002/smll.201904979
    [11]
    王东伟, 房宽峻, 刘秀明, 等. 彩色聚合物微球的制备及其在纺织品印染中应用的研究进展[J]. 纺织学报, 2019, 40(3):175-182.

    WANG Dongwei, FANG Kuanjun, LIU Xiuming, et al. Preparation of color polymer microspheres and research progress thereof in textile dyeing and printing[J]. Journal of Textile Research,2019,40(3):175-182(in Chinese).
    [12]
    王春颖. 功能聚合物微球的制备及性质研究[D]. 长春: 长春理工大学, 2018.

    WANG Chunying. Preparation and properties of functional polymer microspheres[D]. Changchun: Changchun University of Science and Technology, 2018(in Chinese).
    [13]
    顾炜. 多功能聚合物微球的制备及在癌症诊疗中的应用[D]. 苏州: 苏州大学, 2016.

    GU Wei. Preparation of multifunctional polymer microspheres and their application in cancer diagnosis and treatment[D]. Suzhou: Soochow University, 2016(in Chinese).
    [14]
    ZHU C, YANG H, SHEN L, et al. Microfluidic preparation of PLGA microspheres as cell carriers with sustainable rapa release[J]. Journal of Biomaterials Science Polymer Edition,2019,30(9):1-18.
    [15]
    徐浩, 李娟, 朱晶心, 等. 以电纺丝蛋白纤维为模板的pH响应性介孔SiO2纳米管的制备及药物释放[J]. 复合材料学报, 2020, 37(1):173-181.

    XU Hao, LI Juan, ZHU Jingxin, et al. Preparation and drug release of pH-responsive mesoporous SiO2 nanotubes by electrospun silk fibroin nanofibers as templates[J]. Acta Materiae Compositae Sinica,2020,37(1):173-181(in Chinese).
    [16]
    ADELI H, KHORASANI M T, PARVAZINIA M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay[J]. International Journal of Biological Macromolecules,2019,122:238-254. doi: 10.1016/j.ijbiomac.2018.10.115
    [17]
    DING J X, ZHANG J, LI J N, et al. Electrospun polymer biomaterials[J]. Progress in Polymer Science,2019,90:1-34. doi: 10.1016/j.progpolymsci.2019.01.002
    [18]
    OSANLOO M, ARISH J, SERESHTI H. Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: A systematic review[J]. Polymer Bulletin,2020, 77:6085-6104.
    [19]
    SAGHAZADEH S, RINOLDI C, SCHOT M, et al. Drug delivery systems and materials for wound healing applications[J]. Advanced Drug Delivery Reviews,2018,127:138-166. doi: 10.1016/j.addr.2018.04.008
    [20]
    于万永, 赵磊, 王宁, 等. 聚乙烯醇-聚吡咯复合纳米纤维的制备及其导电性能[J]. 复合材料学报, 2018, 35(5):1059-1065.

    YU Wanyong, ZHAO Lei, WANG Ning, et al. Fabrication and conductive properties of polyvinyl alcohol-polypyrrole composite nanofibers[J]. Acta Materiae Compositae Sinica,2018,35(5):1059-1065(in Chinese).
    [21]
    ASADI H, GHAEE A, NOURMOHAMMADI J, et al. Electrospun zein/graphene oxide nanosheet composite nano-fibers with controlled drug release as antibacterial wound dressing[J]. International Journal of Polymeric Materials,2020,69(3):1-13.
    [22]
    TAEMEH M A, SHIRAVANDI A, KORAYEM M A, et al. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers[J]. Carbohydrate Polymers,2020,228:115419. doi: 10.1016/j.carbpol.2019.115419
    [23]
    XU Y J, ZHAO J L, ZHANG Z L, et al. Preparation of electrospray ALG/PDA-PVP nanocomposites and their application in cancer therapy[J]. Soft Matter,2020,16(1):132-141. doi: 10.1039/C9SM01584A
    [24]
    王栋, 宣丽慧, 李超, 等. 静电纺纤维素纳米晶体/壳聚糖-聚乙烯醇复合纳米纤维的制备与表征[J]. 复合材料学报, 2018, 35(4):964-972.

    WANG Dong, XUAN Lihui, LI Chao, et al. Preparation and characterization of electrospun cellulose nanocrystals/chitosan-polyvinyl alcohol composite nanofibers[J]. Acta Materiae Compositae Sinica,2018,35(4):964-972(in Chinese).
    [25]
    CHEN Q, LUO Y, DU W X, et al. Clearable theranostic platform with a pH-independent chemodynamic therapy enhancement strategy for synergetic photothermal tumor therapy[J]. ACS Applied Materials & Interfaces,2019,11(20):18133-18144. doi: 10.1021/acsami.9b02905
    [26]
    HUANG H, LI K, LIU Q, et al. Dual-response CuS@MnO2 nanoparticles with activatable CT/MR-enhanced in vivo imaging guided photothermal therapy[J]. RSC Advances,2019,9(5):2718-2730. doi: 10.1039/C8RA08637K
    [27]
    WANG S, ZHAO J, YANG H, et al. Bottom-up synthesis of WS2 nanosheets with synchronous surface modification for imaging guided tumor regression[J]. Acta Biomaterials,2017,58:442-454. doi: 10.1016/j.actbio.2017.06.014
    [28]
    WU C Y, WANG S G, ZHAO J L, et al. Biodegradable Fe(III)@WS2-PVP nanocapsules for redox reaction and TME-enhanced nanocatalytic, photothermal, and chemotherapy[J]. Advanced Functional Materials,2019,29(26):1901722. doi: 10.1002/adfm.201901722
    [29]
    YUE L D, WANG J L, DAI Z C, et al. pH-responsive, self-sacrificial nanotheranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging, real-time, and in situ monitoring of cancer therapy[J]. Bioconjugate Chemistry,2017,28(2):400-409. doi: 10.1021/acs.bioconjchem.6b00562
    [30]
    PACELLI S, RAMPETSREITER K, MODARESI S, et al. Fabrication of a double-cross-linked interpenetrating polymeric network (IPN) hydrogel surface modified with polydopamine to modulate the osteogenic differentiation of adipose-derived stem cells[J]. ACS Applied Materials & Interfaces,2018,10(30):24955-24962.
    [31]
    CHEN Y K, ZHAO J L, WANG S G, et al. Photothermal composite nanomaterials for multimodal tumor therapy under MRI guidance[J]. ChemistrySelect,2019,4(37):11156-11164. doi: 10.1002/slct.201903481
    [32]
    BAO Z, LIU X, LIU Y, et al. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy[J]. Asian Journal of Pharmaceutical Sciences,2016,11(3):349-364. doi: 10.1016/j.ajps.2015.11.123
    [33]
    GUAN G Q, WANG X, LI B, et al. “Transformed” Fe3S4 tetragonal nanosheets: A high-efficiency and body-clearable agent for magnetic resonance imaging guided photothermal and chemodynamic synergistic therapy[J]. Nanoscale,2018,10(37):17902-17911. doi: 10.1039/C8NR06507A
    [34]
    TIAN Q W, JIANG F R, ZOU R J, et al. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo[J]. ACS Nano,2011,5(12):9761-9771. doi: 10.1021/nn203293t
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1959) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return