Volume 38 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
WEN Guilin, LI Ying, ZHANG Hongxing, et al. Research progress on synthesis, theoretical calculation and application of ionic liquid/Metal-organic framework composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 298-314. doi: 10.13801/j.cnki.fhclxb.20200825.003
Citation: WEN Guilin, LI Ying, ZHANG Hongxing, et al. Research progress on synthesis, theoretical calculation and application of ionic liquid/Metal-organic framework composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 298-314. doi: 10.13801/j.cnki.fhclxb.20200825.003

Research progress on synthesis, theoretical calculation and application of ionic liquid/Metal-organic framework composites

doi: 10.13801/j.cnki.fhclxb.20200825.003
  • Received Date: 2020-06-18
  • Accepted Date: 2020-08-04
  • Available Online: 2020-08-26
  • Publish Date: 2021-02-15
  • Metal-organic framework (MOF) is a new type of nano-material with porous and high specific surface area. Ionic liquids (IL) are characterized by good stability and functional design. Loading IL into the pores of MOF to achieve an effective combination of ionic liquids and MOF materials to develop new composite materials is conducive to giving full play to the advantages of the two materials. This article mainly introduces the latest research on the synthesis methods, structural properties and applications of IL/MOF composites, summarizes the current problems and opportunities in the research of IL/MOF composite materials, and prospects the development direction of IL/MOF composite materials.

     

  • loading
  • [1]
    BAN Y, LI Z, LI Y, et al. Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of ZIF-8 for mem-brane-based CO2 capture[J]. Angewandte Chemie,2015,54(51):15483-15487.
    [2]
    BAE Y, LEE C Y, KIM K C, et al. High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites[J]. Angewandte Chemie,2012,51(8):1857-1860.
    [3]
    KAZUYUKI F, HIROSHI K. Ionic liquid transported into metal-organic frameworks[J]. Coordination Chemistry Reviews,2016,307:382-390. doi: 10.1016/j.ccr.2015.09.003
    [4]
    HOSSEIN S, GOMAA A M A, VAHID S. Metal-organic framework supported ionic liquid membranes for CO2 capture: Anion effects[J]. Journal of Inorganic and Organometallic Polymers and Materials,2012,14(16):5785-5794.
    [5]
    TANG Y, HUANG H, LI J, et al. IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture[J]. Journal of Materials Chemistry A,2019,7(31):18324-18329. doi: 10.1039/C9TA04408F
    [6]
    MORRIS R E. Ionothermal synthesis-ionic liquids as functional solvents in the preparation of crystalline materials[J]. Chem Commun (Camb),2009,40(21):2990-2998. doi: 10.1039/b902611h
    [7]
    AN J, ROSI N L. Tuning MOF CO2 adsorption properties via cation exchange[J]. Journal of the American Chemical Society,2010,132(16):5578-5579. doi: 10.1021/ja1012992
    [8]
    BAN Y, LI Y, PENG Y, et al. Metal-substituted zeolitic imidazolate framework ZIF-108: Gas-sorption and membrane-separation properties[J]. Chemistry-A European Journal,2014,20(36):11402-11409. doi: 10.1002/chem.201402287
    [9]
    THOMPSON J A, VAUGHN J T, BRUNELLI N A, et al. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas[J]. Miroporous and Mesoporous Material,2014,192:43-51. doi: 10.1016/j.micromeso.2013.06.036
    [10]
    HU Z, XU Q L. Metal-organic frame-work composites[J]. Chemical Society Reviews,2014,43(16):5468-5512. doi: 10.1039/C3CS60472A
    [11]
    UZUN A, KESKIN S. Site characteristics in metal organic frameworks for gas adsorption[J]. Progress in Surface Science,2014,89(1):56-79. doi: 10.1016/j.progsurf.2013.11.001
    [12]
    WAN H, CHEN C, WU Z, et al. Encapsulation of heteropolyanion-based ionic liquid within the metal-organic framework MIL-100(Fe) for biodiesel production[J]. ChemCatChem,2015,7(3):441-449. doi: 10.1002/cctc.201402800
    [13]
    KHAN N A, HASAN Z, JHUNG S H. Ionic liquids supported on metal-organic frameworks: Remarkable adsorbents for adsorptive desulfurization[J]. Chemistry-A European Journal,2014,20(2):376-380. doi: 10.1002/chem.201304291
    [14]
    L UO, Q X, SONG X D, et al. Molecular size-and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst[J]. Applied Catalysis A: General,2014,478:81-90. doi: 10.1016/j.apcata.2014.03.041
    [15]
    ABEDNATANZI S, ABBASI A, MAJID M F. Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100 (Fe): A recyclable catalyst for selective oxidation of benzyl alcohol[J]. Catalysis Communications,2017,96:6-10. doi: 10.1016/j.catcom.2017.03.011
    [16]
    WU J, GAO Y, ZHANG W, et al. Deep desulfurization by oxidation using an active ionic liquid-supported Zr metal-organic framework as catalyst[J]. Applied Organometallic Chemistry,2015,29(2):96-100. doi: 10.1002/aoc.3251
    [17]
    SEZGINEL K B., KESKIN S, UZUN A. Tuning the gas separation performance of CuBTC by ionic liquid incorporation[J]. Langmuir the Acs Journal of Surfaces & Colloids,2016,32(4):1139-1147. doi: 10.1021/acs.langmuir.5b04123
    [18]
    CHEN C, WU Z, QUE Y, et al. Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge[J]. RSC Advances,2016,6(59):54119-54128. doi: 10.1039/C6RA03317B
    [19]
    MA J, YING Y, GUO X, et al. Fabrication of mixed-matrix membrane containing metal-organic framework compo-site with task-specific ionic liquid for efficient CO2 separation[J]. Journal of Materials Chemistry A,2016,4(19):7281-7288. doi: 10.1039/C6TA02611G
    [20]
    HAN M, GU Z, CHEN C, et al. Efficient confinement of ionic liquids in MIL-100(Fe) frameworks by the “impregnation-reaction-encapsulation” strategy for biodiesel production[J]. RSC Advances,2016,6(43):37110-37117. doi: 10.1039/C6RA00579A
    [21]
    NASROLLAHPOUR A, MORADI S E. Hexavalent chromium removal from water by ionic liquid modified metal-organic frameworks adsorbent[J]. Microporous Mesoporous Materials,2017,243:47-55. doi: 10.1016/j.micromeso.2017.02.006
    [22]
    DA SILVA F W M, MAGALHÃES G M, JARDIM E O. CO2 adsorption on ionic liquid-modified Cu-BTC: Experimental and simulation study[J]. Adsorption Science & Technology,2015,33:223-242.
    [23]
    IZATT R M. Macrocyclic and supramolecular chemistry: How izatt-christensen award winners shaped the field[M]. Hoboken: John Wiley & Sons, 2016: 10-37.
    [24]
    LUO Q X, JI M, LU M H, et al. Organic electron-rich N-heterocyclic compound as a chemical bridge: Building a Brönsted acidic ionic liquid confined in MIL-101 nanocages[J]. Journal of Materials Chemistry A,2013,1(22):6530-6534. doi: 10.1039/c3ta10975e
    [25]
    FUJIE K, YAMADA T, IKEDA R, et al. Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior[J]. Angewandte Chemie International Edition,2014,53(42):11302-11305. doi: 10.1002/anie.201406011
    [26]
    FUJIE K, OTSUBO K, IKEDA R, et al. Low temperature ionic conductor: Ionic liquid incor-porated within a metal-organic framework[J]. Chemical science,2015,6(7):4306-4310. doi: 10.1039/C5SC01398D
    [27]
    X IN, Y, WANG C, WANG Y, et al. Encapsulation of an ionic liquid into the nanopores of a 3D covalent organic framework[J]. RSC Advances,2017,7(3):1697-1700. doi: 10.1039/C6RA27213D
    [28]
    DHUMAL N R, SINGH M P, ANDERSON J A, et al. Molecular interactions of a Cu-based metal-organic framework with a confined imidazolium-based ionic liquid: A combined density functional theory and experimental vibrational spectroscopy study[J]. The Journal of Physical Chemistry C,2016,120(6):3295-3304. doi: 10.1021/acs.jpcc.5b10123
    [29]
    FUJIE K, IKEDA R, OTSUBO K, et al. Lithium ion diffusion in a metal-organic framework mediated by an ionic liquid[J]. Chemistry of Material,2015,27(21):7355-7361. doi: 10.1021/acs.chemmater.5b02986
    [30]
    LI Z, WANG W, CHEN Y, et al. Constructing efficient ion nanochannels in alkaline anion ex-change membranes by the in situ assembly of a poly (ionic liquid) in metal-organic frameworks[J]. Journal of Materials Chemistry A,2016,4(6):2340-2348. doi: 10.1039/C5TA10452A
    [31]
    KHAN N A, HASAN Z, JHUNG S H. Ionic liquid@ MIL-101 prepared via the ship-in-bottle technique: Remarkable adsorbents for the removal of benzothiophene from liquid fuel[J]. Chemical Communications,2016,52(12):2561-2564. doi: 10.1039/C5CC08896H
    [32]
    XUE W, LI Z, HUANG H, et al. Effects of ionic liquid dispersion in metal-organic frameworks and covalent organic frameworks on CO2 capture: A computational study[J]. Chemical Engineering Science,2016,140:1-9. doi: 10.1016/j.ces.2015.10.003
    [33]
    CHEN B, OCKWIG N W, MILLWARD A R, et al. High H2 adsorption in a microporous metal-organic framework with open metal sites[J]. Angewandte Chemie International Edition,2005,44(30):4745-4749. doi: 10.1002/anie.200462787
    [34]
    XIANG S, ZHOU W, GALLEGOS J M, et al. Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites[J]. Journal of the American Chemical Society,2009,131(34):12415-12419. doi: 10.1021/ja904782h
    [35]
    WU H, ZHOU W, YILDIRIM T. High-capacity methane storage in metal-organic frameworks M2(dhtp): The important role of open metal sites[J]. Journal of the American Chemical Society,2009,131(13):4995-5000. doi: 10.1021/ja900258t
    [36]
    DIETZEL P DC, BESIKIOTIS V, BLOM R. Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide[J]. Journal of Materials Chemistry,2009,19(39):7362-7370. doi: 10.1039/b911242a
    [37]
    KINIK F P, ALTINTAS C, BALCI V, et al. [BMIM][PF6] incorporation doubles CO2 selectivity of ZIF-8: Elucidation of interactions and their consequences on performance[J]. ACS Applied Materials & Interfaces,2016,8(45):30992-31005.
    [38]
    POLATA H M, ZEESHAN M, UZUN A, et al. Unlocking CO2 separation performance of ionic liquid/CuBTC composites: Combining experiments with molecular simulations[J]. Chemical Engineering Journal,2019,373:1179-1189. doi: 10.1016/j.cej.2019.05.113
    [39]
    LEI Z, DAI C, SONG W. Adsorptive absorption: A preliminary experimental and modeling study on CO2 solubility[J]. Chemical Engineering Science,2015,127:260-268. doi: 10.1016/j.ces.2015.01.043
    [40]
    GUPTA K M, CHEN Y, JIANG J. Ionic liquid membranes supported by hydrophobic and hydrophilic metal-organic frameworks for CO2 capture[J]. The Journal of Physical Chemistry C,2013,117(11):5792-5799. doi: 10.1021/jp312404k
    [41]
    KINIK F P, UZUN A, KESKIN S. Ionic liquid/metal-organic framework composites: From synthesis to applications[J]. ChemSusChem,2017,10(14):2842-2863. doi: 10.1002/cssc.201700716
    [42]
    KOYUTURK B, ALTINTAS C, KINIK F P, et al. Improving gas separation performance of ZIF-8 by [BMIM][BF4] incorporation: Interactions and their consequences on performance[J]. The Journal of Physical Chemistry C,2017,121(19):10370-10381. doi: 10.1021/acs.jpcc.7b00848
    [43]
    CHEN Y, HU Z, GUPTA K M, et al. Ionic liquid/metal-organic framework composite for CO2 capture: A computational investigation[J]. The Journal of Physical Chemistry C,2011,115(44):21736-21742.
    [44]
    KULAK H, POLAT H M, KAVAK S, et al. Improving CO2 separation performance of MIL-53(Al) by incorporating 1-n-butyl-3-methylimidazolium methyl sulfate[J]. Energy Technol (Weinh),2019,7(7):1900157. doi: 10.1002/ente.201900157
    [45]
    XIA X, HU G, LI W, et al. Understanding reduced CO2 uptake of ionic liquid/metal-organic framework (IL/MOF) composites[J]. ACS Applied Nano Materials,2019,2(9):6022-6029. doi: 10.1021/acsanm.9b01538
    [46]
    FERREIRA T J, RIBEIRO R P P L, MOTA J P B, et al. Ionic liquid-impregnated metal–organic frameworks for CO2/CH4 separation[J]. ACS Applied Nano Materials,2019,2(12):7933-7950. doi: 10.1021/acsanm.9b01936
    [47]
    ANTHONY J L, ANDERSON J L, MAGINN E J, et al. Anion effects on gas solubility in ionic liquids[J]. The Journal of Physical Chemistry B,2005,109(13):6366-6374. doi: 10.1021/jp046404l
    [48]
    ZEESHAN M, NOZARI V, YAGCI M B, et al. Core-shell type ionic liquid/metal organic framework composite: An exceptionally high CO2/CH4 selectivity[J]. Journal of the American Chemical Society,2018,140(32):10113-10116. doi: 10.1021/jacs.8b05802
    [49]
    LI Z, XIAO Y, XUE W, et al. Ionic liquid/metal-organic framework composites for H2S removal from natural gas: A computational exploration[J]. The Journal of Physical Chemistry C,2015,119(7):3674-3683. doi: 10.1021/acs.jpcc.5b00019
    [50]
    武晓博, 范远, 韩昕儒, 等. 天然气脱硫过程分析及应对措施[J]. 中国石油和化工标准与质量, 2019, 39(12):171-172.

    WU Xiaobo, FAN Yuan, HAN Xinru, et al. Analysis and countermeasures of natural gas desulfurization process[J]. China Petroleum and Chemical Standards and Quality,2019,39(12):171-172(in Chinese).
    [51]
    刘恒. 天然气脱硫脱碳工艺的进展分析[J]. 能源与环保, 2019, 41(3):122-125.

    LIU Heng. Progress analysis of natural gas desulfurization and decarbonization process[J]. China Energy and Environmental Protection,2019,41(3):122-125(in Chinese).
    [52]
    LAMBERT T W, GOODWIN V M, STEFANI D, et al. Hydrogen sulfide (H2S) and sour gas effects on the eye: A historical perspective[J]. Science of the Total Environment,2006,367(1):1-22. doi: 10.1016/j.scitotenv.2006.01.034
    [53]
    CHOU, CH S J. Concise international chemical assessment document 53[R]. Geneva: World Health Organization, 2003.
    [54]
    屈志伟. 浅析天然气脱硫主要方法[J]. 山东工业技术, 2019(10):83.

    QU Zhiwei. Analysis on the main methods of natural gas desulfurization[J]. Shandong Industrial Technology,2019(10):83(in Chinese).
    [55]
    BAREA E, MONTORO C, NAVARRO J A R. Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours[J]. Chemical Society Reviews,2014,43(16):5419-5430. doi: 10.1039/C3CS60475F
    [56]
    DHAGE P, SAMOKHVALOV A, REPALA D, et al. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: Performance, active sites, operando studies[J]. Physical Chemistry Chemical Physics,2011,13(6):2179-2187. doi: 10.1039/C0CP01355B
    [57]
    SHIRAZI A, RAEISPOUR L, MOHAMMAD N. Modeling H2S solubility in aqueous N-methyldiethanolamine solution using a new ePC_SAFT-MB equation of state[J]. Fluid Phase Equilibria,2019,502:112289. doi: 10.1016/j.fluid.2019.112289
    [58]
    LI Y, MATHER A E. Correlation and prediction of the solubility of CO2 and H2S in aqueous solutions of methyldiethanolamine[J]. Industrial Engineering Chemistry Research,1997,36(7):2760-2765. doi: 10.1021/ie970061e
    [59]
    SONG H, LI X, JIANG B, et al. Preparation of novel and highly stable Py/MOF and its adsorptive desulfurization performance[J]. Industrial & Engineering Chemistry Research,2019,58(42):19586-19598.
    [60]
    ERUCAR I, YILMAZ G, KESKIN S. Recent advances in metal-organic framework-based mixed matrix membranes[J]. Chemistry-An Asian Journal,2013,8(8):1692-1704. doi: 10.1002/asia.201300084
    [61]
    张晶晶, 张亚涛. 基于MOF的混合基质膜在气体分离中的研究进展[J]. 现代化工, 2019, 39(8):38-42.

    ZHANG Jingjing, ZHANG Yatao. Research progress in applications of MOFs-based mixed matrix membrane in gas separation[J]. Modern Chemical Industry,2019,39(8):38-42(in Chinese).
    [62]
    JOMEKIAN A, BAZOOYAR B, BEHBAHANI R M, et al. Ionic liquid-modified Pebax® 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4, N2 and H2[J]. Journal of Membrane Science,2017,524:652-662. doi: 10.1016/j.memsci.2016.11.065
    [63]
    HAO L, LI P, YANG T, et al. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture[J]. Journal of Membrane Science,2013,436:221-231. doi: 10.1016/j.memsci.2013.02.034
    [64]
    CLARA C C, ANA F B, BEATRIZ Z, et al. Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation[J]. RSC Advances,2015,5(124):102350-102361. doi: 10.1039/C5RA19331A
    [65]
    TZIALLA O, VEZIRI C, PAPATRYFON X, et al. Zeolite imidazolate framework-ionic liquid hybrid membranes for highly selective CO2 separation[J]. Journal of Physical Chemistry C,2013,117(36):18434-18440. doi: 10.1021/jp4051287
    [66]
    HUANG Y, XIAO Y, HUANG H, et al. Ionic liquid functionalized multi-walled carbon nanotubes/zeolitic imidazolate framework hybrid membranes for efficient H2/CO2 separation[J]. Chemical Communications,2015,51(97):17281-17284. doi: 10.1039/C5CC05061H
    [67]
    DEIKO G S, ISAEVA V I, KUSTOV L M. New molecular sieve materials: composites based on metal-organic frameworks and ionic liquids[J]. Petroleum Chemistry,2019,59(8):770-787. doi: 10.1134/S096554411908005X
    [68]
    NABAISA A R, MARTINSB A P S, ALVES V D, et al. Poly(ionic liquid)-based engineered mixed matrix membranes for CO2/H2 separation[J]. Separation and Purification Technology,2019,222:168-176. doi: 10.1016/j.seppur.2019.04.018
    [69]
    VU M T, LIN R, DIAO H, et al. Effect of ionic liquids (IL) on MOF/polymer interfacial enhancement in mixed matrix membranes[J]. Journal of Membrane Science,2019,587:117157. doi: 10.1016/j.memsci.2019.05.081
    [70]
    RU C, GU Y, NA H, et al. Preparation of a cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane with enhanced proton conductivity and methanol resistance by introducing an ionic liquid-impregnated metal organic framework[J]. ACS Applied Materials & Interfaces,2019,11(35):31899-31908. doi: 10.1021/acsami.9b09183
    [71]
    LI H, TUO L, YANG K, et al. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid[J]. Journal of Membrane Science,2016,511:130-142. doi: 10.1016/j.memsci.2016.03.050
    [72]
    罗资琴. 石油及其产品中硫危害的分析[J]. 宁夏石油化工, 2003(3):8-10.

    LUO Ziqin. The analysis onthe damages caused by sulfur in petroleum and its products[J]. Ningxia Petroleum and Chemical Industry,2003(3):8-10(in Chinese).
    [73]
    SRIVASTAVA V C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels[J]. RSC Advances,2012,2(3):759-783. doi: 10.1039/C1RA00309G
    [74]
    JAVADLI R, ARNO D K. Desulfurization of heavy oil[J]. Applied Petrochemical Research,2012,1(1-4):3-19. doi: 10.1007/s13203-012-0006-6
    [75]
    SAMOKHVALOV A, TATARCHUK B J. Review of experimental characterization of active sites and determination of molecular mech-anisms of adsorption, desorption and regeneration of the deep and ultradeep desulfurization sorbents for liquid fuels[J]. Catalysis Reviews,2010,52(3):381-410. doi: 10.1080/01614940.2010.498749
    [76]
    AHMEDA I, ADHIKARYB K K, LEE Y R, et al. Ionic liquid entrapped UiO-66: Efficient adsorbent for Gd3+ capture from water[J]. Chemical Engineering Journal,2019,370:792-799. doi: 10.1016/j.cej.2019.03.265
    [77]
    GUTIERREZ-SEVILLANO J J, VICENT-LUNA J M, DUBBELDAM D, et al. Molecular mechanisms for adsorption in Cu-BTC metal organic framework[J]. The Journal of Physical Chemistry C,2013,117(21):11357-11366. doi: 10.1021/jp401017u
    [78]
    ZHANG Y, DEGIRMENCI V, LI C, et al. Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural[J]. ChemSusChem,2011,4(1):59-64. doi: 10.1002/cssc.201000284
    [79]
    孙健, 李岱霖, 倪菲, 等. 离子液体应用的研究进展[J]. 应用化工, 2019, 48(7):1724-1727, 1733.

    SUN Jian, LI Dailin, NI Fei, et al. Advances in the applications of ionic liquids[J]. Applied Chemical Industry,2019,48(7):1724-1727, 1733(in Chinese).
    [80]
    THARUN J, BHIN K M, ROSHAN R, et al. Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2[J]. Green Chemistry,2016,18(8):2479-2487. doi: 10.1039/C5GC02153G
    [81]
    DAI W, MAO P, LIU Y, et al. Quaternary phosphonium salt-functionalized Cr-MIL-101: A bi-functional and efficient catalyst for CO2 cycload-dition with epoxides[J]. Journal of CO2 Utilization,2020,36:295-305. doi: 10.1016/j.jcou.2019.10.021
    [82]
    LUO Q, AN B, JI M, et al. Metal-organic frameworks HKUST-1 as porous matrix for encapsulation of basic ionic liquid catalyst: Effect of chemical behaviour of ionic liquid in solvent[J]. Journal of Porous Materials,2014,22(1):247-259.
    [83]
    SUN Y, JIA X, HUANG H, et al. Solvent-free mechanochemical route for the construction of ionic liquid and mixed-metal MOF composites for synergistic CO2 fixation[J]. Journal of Materials Chemistry A,2020,8(6):3180-3185. doi: 10.1039/C9TA10409G
    [84]
    MASAAKI S, TEPPEI Y, HIROSHI K. Proton conductivity control by ion substitution in a highly proton-conductive metal-organic framework[J]. Journal of the American Chemical Society,2014,136(38):13166-13169. doi: 10.1021/ja507634v
    [85]
    XU G, OTSUBO K, YAMADA T, et al. Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm[J]. Journal of the American Chemical Society,2013,135(20):7438-7441. doi: 10.1021/ja402727d
    [86]
    HORIKE S, UMEYAMA D, KITAGAWA S. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks[J]. Accounts of Chemical Research,2013,46(11):2376-2384. doi: 10.1021/ar300291s
    [87]
    WANG G, WENG Y, CHU D, et al. Preparation of alkaline anion exchange membranes based on functional poly (etherimide) polymers for potential fuel cell applications[J]. Journal of Membrane Science,2009,326(1):4-8. doi: 10.1016/j.memsci.2008.09.037
    [88]
    LIU C, ZHANG G, ZHAO C, et al. MOF synthesized by the ionothermal method addressing the leaching problem of IL-polymer composite membranes[J]. Chemical Communications,2014,50(91):14121-14124. doi: 10.1039/C4CC05526H
    [89]
    SUN X, DENG W, CHEN H, et al. A metal-organic framework impregnated with a binary ionic liquid for safe proton conduction above 100℃[J]. Chemistry-A European Journal,2017,23(6):1248-1252. doi: 10.1002/chem.201605215
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (2071) PDF downloads(266) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return