Volume 38 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
DUAN Cong, FANG Yiqun, WANG Fengqiang, et al. Synergistic flame retardancy of nano-BN and ZnO on wood flour-polyvinyl chloride composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1147-1154. doi: 10.13801/j.cnki.fhclxb.20200812.001
Citation: DUAN Cong, FANG Yiqun, WANG Fengqiang, et al. Synergistic flame retardancy of nano-BN and ZnO on wood flour-polyvinyl chloride composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1147-1154. doi: 10.13801/j.cnki.fhclxb.20200812.001

Synergistic flame retardancy of nano-BN and ZnO on wood flour-polyvinyl chloride composites

doi: 10.13801/j.cnki.fhclxb.20200812.001
  • Received Date: 2020-05-28
  • Accepted Date: 2020-07-29
  • Available Online: 2020-08-13
  • Publish Date: 2021-04-08
  • The effects of the nano BN and ZnO on the thermal decomposition, combustion and mechanical properties of wood flour-polyvinyl chloride (WF-PVC) composites were investigated. The flame retarded WF-PVC composites with nano-BN and ZnO were prepared by hot pressing. Thermogravimetric analysis (TG) test results show that the addition of BN and ZnO reduces the initial thermal degradation temperature of the composites, while significantly increases the pyrolysis residues of the composites. When the mass ratio of BN to ZnO is 1∶2, the residues content of the composites increases by 21.7%. The cone calorimeter combustion test results show that the addition of nano-BN and ZnO significantly improves the flame retardant properties of the composites. Compared with the pure WF-PVC, the addition of BN and ZnO effectively decreases the heat release and smoke release during combustion of the composites, the total heat release and total smoke emission are decreased by 18.2% and 48.9%, respectively. The mechanical properties of the composites were tested by the universal mechanical testing machine. The results show that the addition of the flame retardants has some negative effects on the mechanical properties of the composites. However, the flame retardants were compounded in a certain proportion, which could effectively reduce the damage to the mechanical properties of the composites. The flexural strength of the composites is reduced by 29.5% when the ZnO is added alone, while the flexural strength of the composites is decreased by 9.9% when the mass ratio of BN to ZnO is 2∶1.

     

  • loading
  • [1]
    ASHORI A. Wood-plastic composites as promising green-composites for automotive industries[J]. Bioresource Technology,2008,99(11):4661-4667. doi: 10.1016/j.biortech.2007.09.043
    [2]
    SELKE S E, WICHMAN I. Wood fiber/polyolefin compo-sites[J]. Composites Part A: Applied Science & Manufacturing,2004,35(3):321-326.
    [3]
    RAJ R G, KOKTA B V, MALDAS D, et al. Use of wood fibers in thermoplastics. VII. The effect of coupling agents in polyethylene-wood fiber composites[J]. Journal of Applied Polymer Science,1989,37(4):1089-1103. doi: 10.1002/app.1989.070370420
    [4]
    窦艳丽, 李雪菲, 张天琪, 等. β-环糊精-聚磷酸铵对黄麻/聚丙烯复合材料阻燃性能的影响[J]. 复合材料学报, 2019, 36(11):2568-2578.

    DOU Y L, LI X F, ZHANG T Q, et al. Effect of β-cyclodextrin and ammonium polyphosphate on flame retardancy of jute/polypropylene composites[J]. Acta Materiae Compo-site Sinica,2019,36(11):2568-2578(in Chinese).
    [5]
    SAIN M, PARKS H, SUHARAF, et al. Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide[J]. Polymer Degradation & Stability,2004,83(2):363-367.
    [6]
    HOANG DQ, PHAMTL, NGUYEN TH, et al. Organo-phosphorus flame retardants for poly(vinyl chloride)/wood flour composite[J]. Polymer Composites,2016,39(3):961-970.
    [7]
    FARUK O, MATUANA L M. Reinforcement of rigid PVC/wood-flour composites with multi-walled carbon nanotubes[J]. Journal of Vinyl & Additive Technology,2010,14(2):60-64.
    [8]
    李斌, 王建祺. 聚合物材料燃烧性和阻燃性的评价—锥形量热仪(CONE)法[J]. 高分子材料科学与工程, 1998(5):15-19. doi: 10.3321/j.issn:1000-7555.1998.05.004

    LI B, WANG J Q. Utilization of cone calorimeter for the appraisal of the flammability and flame retardancy of polymer materials[J]. Polymer Materials Science and Engineering,1998(5):15-19(in Chinese). doi: 10.3321/j.issn:1000-7555.1998.05.004
    [9]
    嘠力巴, 刘姝, 王鲁英, 等. 木材阻燃研究及发展趋势[J]. 化学与粘合, 2012(4):68-71. doi: 10.3969/j.issn.1001-0017.2012.04.019

    GA L B, LIU S, WANG L Y, etal. Research on wood flame-retardant and development trend[J]. Chemistry and Adhesion,2012(4):68-71(in Chinese). doi: 10.3969/j.issn.1001-0017.2012.04.019
    [10]
    WU Z P, SHU W Y, HU Y C. Synergist flame retarding effect of ultrafine zinc borate on LDPE/IFR system[J]. Journal of Applied Polymer Science,2010,103(6):3667-3674.
    [11]
    SEEFELD H, BRAUN U, WAGNER M H. Residue stabilization in the fire retardancy of wood–plastic composites: Combination of ammonium polyphosphate, expandable graphite, and red phosphorus[J]. Macromolecular Chemistry & Physics,2012,213(22):2370-2377.
    [12]
    NAUMANN A, SEEFELDT, STEPJAN I, et al. Material resistance of flame retarded wood-plastic composites against fire and fungal decay[J]. Polymer Degradation & Stability,2012,97(7):1189-1196.
    [13]
    GAO L, WANG Z, GUOW J. Effect of insoluble APP on properties of wood-plastic composites[J]. Journal of Beijing Forestry University,2010,32(4):247-250.
    [14]
    房轶群. 基于协同成炭木粉-聚氯乙烯复合材料的阻燃抑烟研究[D]. 哈尔滨: 东北林业大学, 2013.

    FANG Y Q. Flame retardance and smoke suppression of woodflour-poly(vinyl chloride) composites based on synergistic char formation[D]. Harbin: Northeast Forestry University, 2013(in Chinese).
    [15]
    WANG Y, LIU C, SHI X, et al. Synergistic effect of halloysite nanotubes on flame resistance of intu-mescent flame retardant poly(butylene succinate) composites[J]. Polymer Composites,2019,40(1):202-209. doi: 10.1002/pc.24629
    [16]
    LUY, JIA Y L, ZHANG Y, et al. Straightforward one-step solvent-free synthesis of the flame retardant for cotton with excellent efficiency and durability[J]. Carbohydrate Polymers,2018,201:438-445. doi: 10.1016/j.carbpol.2018.08.078
    [17]
    GAO D G, LI R, LV B, et al. Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric[J]. Composites Part B: Engineering,2015,77:329-337. doi: 10.1016/j.compositesb.2015.03.061
    [18]
    LIU JJ, KUTTY RG, ZHENG Q S, et al. Hexagonal boron nitride nanosheets as high-performance binder free fire-resistant wood coatings[J]. Small,2017,13(2):1602456. doi: 10.1002/smll.201602456
    [19]
    International Organization for Standardization. Reaction-to- fire tests: Heat release, smoke production and mass loss rate Part 1: Heat release rate (cone calorimeter method): ISO 5660-1-2002[S]. Geneva: International Organization for Standardization, 2002.
    [20]
    ASTM. Stanfard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790—17[S]. West Conshohocken: ASTM International, 2017.
    [21]
    ASTM. Standard test method fordetermining the charpy impact resistance of notchedspecimens of plastics: ASTM D6110—17[S]. West Conshohocken: ASTM International, 2017.
    [22]
    SHEN K K, KOCHESFAHANI S, JOUFFRET F. Zinc borates as multifunctional polymer additives[J]. Polymers for Advanced Technologies,2010,19(6):469-474.
    [23]
    HIRSCHLER M M. Smoke and heat release and ignitability as measures of fire hazard from burning of carpet tiles[J]. Fire Safety Journal,1992,18(4):305-324. doi: 10.1016/0379-7112(92)90022-5
    [24]
    HENDRIKSE K G, MCGILL W J, REEDIJK J, et al. Vulcanization of chlorobutyl rubber. I. The identification of crosslink precursors in compounds containing ZnO/ZnCl2[J]. Journal of Applied Polymer Science,2000,78(13):2290-2301. doi: 10.1002/1097-4628(20001220)78:13<2290::AID-APP60>3.0.CO;2-P
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (1013) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return