Volume 38 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
HUANG Wentao, DENG Chengxun, JI Yuchen, et al. Synthesis of chitosan functionalized magnetic graphene oxide composite and adsorption on methyl orange[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1262-1271. doi: 10.13801/j.cnki.fhclxb.20200723.003
Citation: HUANG Wentao, DENG Chengxun, JI Yuchen, et al. Synthesis of chitosan functionalized magnetic graphene oxide composite and adsorption on methyl orange[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1262-1271. doi: 10.13801/j.cnki.fhclxb.20200723.003

Synthesis of chitosan functionalized magnetic graphene oxide composite and adsorption on methyl orange

doi: 10.13801/j.cnki.fhclxb.20200723.003
  • Received Date: 2020-05-21
  • Accepted Date: 2020-07-13
  • Available Online: 2020-07-23
  • Publish Date: 2021-04-08
  • The chitosan/magnetic graphene oxide (CS/MGO) composites were synthesized by the modified Hummers and hydrothermal methods and applied as an adsorbent for the removal of methyl orange (MO). CS/MGO composite was characterized by SEM, XRD, BET, FTIR and a vibrating sample magnetometer (VSM). Results show that Fe3O4 nanoparticles mainly exist on the surface of graphene oxide and chitosan (CS) composite with less aggregation and a good magnetic response. In addition, the thermal stability is good, and the specific surface area of CS/MGO is 36.873 m2·g−1. CS/MGO composite could be easily separated by magnetic separation and demonstrates good stability and reusability. The effects of pH, initial concentration of MO, CS/MGO composite amount and regeneration on the removal of MO were systematically investigated. The results reveal that the initial MO concentration of 20 mg·L−1, CS/MGO composite amount of 0.12 g·L−1, and pH=3 lead to the adsorption equilibrium after 210 min. CS/MGO composite maintains 83.7% of its maximum MO adsorption capacity after five consecutive cycles. The adsorption process conforms to the pseudo-second-order kinetic model, and the adsorption isotherms conform to the Langmuir model. The maximum adsorption amounts at 298.15, 303.15 and 308.15 K are 129.96, 138.94 and 145.03 mg·g−1, respectively. The adsorption thermodynamics indicate that the adsorption process is endothermic; entropy increases the spontaneous adsorption process.

     

  • loading
  • [1]
    SUBBAIAHM V, KIM D S. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies[J]. Ecotoxicology and Environmental Safety,2016,128:109-117. doi: 10.1016/j.ecoenv.2016.02.016
    [2]
    FU L, BAI Y N, LU Y Z, et al. Degradation of organic pollutants by anaerobic methane-oxidizing microorganisms using methyl orange as example[J]. Journal of Hazardous Materials,2019,364:264-271. doi: 10.1016/j.jhazmat.2018.10.036
    [3]
    GAO M, WANG Z, YANG C, et al. Novel magnetic graphene oxide decorated with persimmon tannins for efficient adsorption of malachite green from aqueous solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,566:48-57.
    [4]
    毕玉玺, 凌辉, 唐振平, 等. 磁性介孔TiO2/氧化石墨烯复合材料的制备及其对U(Ⅵ)的吸附[J]. 复合材料学报, 2019, 36(9):2176-2186.

    BI Y X, LING H, TANG Z P, et al. Preparation of magnetic mesoporous TiO2/graphene oxide composites and their adsorption for U(Ⅵ)[J]. Acta Materiae Compositae Sinica,2019,36(9):2176-2186(in Chinese).
    [5]
    CHENG Z, LIAO J, HE B, et al. One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis[J]. ACS Sustainable Chemistry & Engineering,2015,3(7):1677-1685.
    [6]
    OTHMANN H, ALIAS N H, SHAHRUDDIN M. Z, et al. Adsorption kinetics of methylene blue dyes onto magnetic grapheneoxide[J]. Journal of Environmental Chemical Engineering,2018,6(2):2803-2811. doi: 10.1016/j.jece.2018.04.024
    [7]
    LIU S, HUANG B, CHAI L, et al. Enhancement of As (V) ad-sorption from aqueous solution by a magnetic chitosan/biochar composite[J]. RSC Advances,2017,7(18):10891-10900. doi: 10.1039/C6RA27341F
    [8]
    LE T T N, LE V T, DAO M U, et al. Preparation of magnetic graphene oxide/chitosan composite beads for effective removal of heavy metals and dyes from aqueous solutions[J]. Chemical Engineering Communications,2019,206(10):1337-1352. doi: 10.1080/00986445.2018.1558215
    [9]
    XU, L, HUANG Y A, ZHU Q J, et al. Chitosan in molecularly-imprinted polymers: Current and future prospects[J]. International Journal of Molecular Sciences,2015,16(8):18328-18347. doi: 10.3390/ijms160818328
    [10]
    SUN L, YUAN Z, GONG W, et al. The mechanism study of trace Cr (VI) removal from water using Fe0nanorods modified with chitosan in porous anodic alumina[J]. Applied Surface Science,2015,328:606-613. doi: 10.1016/j.apsusc.2014.12.094
    [11]
    郜玉楠, 周历涛, 王静, 等. 壳聚糖/沸石分子筛复合吸附颗粒的制备与性能[J]. 复合材料学报, 2019, 36(3):701-707.

    GAO Y N, ZHOU L T, WANG J, et al. Preparation and performances of chitosan/zeolite molecular sieve composite adsorbed particles[J]. Acta Materiae Compositae Sinica,2019,36(3):701-707(in Chinese).
    [12]
    FAN L, LUO C, SUN M, et al. Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue[J]. Bioresource Technology,2012,114:703-706. doi: 10.1016/j.biortech.2012.02.067
    [13]
    丁杰, 沙焕伟, 赵双阳, 等. 磁性氧化石墨烯/壳聚糖制备及其对磺胺嘧啶吸附性能研究[J]. 环境科学学报, 2016, 36(10):3691-3700.

    DING J, SHA H W, ZHAO S Y, et al. Synthesis of graphene oxide/magnetite chitosan composite and adsorption performance for sulfadiazine[J]. Acta Scientiae Circumstantiae,2016,36(10):3691-3700(in Chinese).
    [14]
    李林波, 马键. 氧化石墨烯/改性磁性壳聚糖复合材料对Cu2+的吸附研究[J]. 化工新型材料, 2019, 47(8):261-264.

    LI L B, MA J. Study on adsorption of Cu2+by GO/modified magnetic chitosan composite[J]. New Chemical Materials,2019,47(8):261-264(in Chinese).
    [15]
    MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806-4814. doi: 10.1021/nn1006368
    [16]
    CUI L M, WANG Y G, GAO L, et al. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property[J]. Chemical Engineering Journal,2015,281:1-10. doi: 10.1016/j.cej.2015.06.043
    [17]
    DUANH, LI L, WANG X, et al. β-Cyclodextrin/chitosan-magnetic graphene oxide-surface molecularly imprinted polymer nanocomplex coupled with chemiluminescence biosensing of bovine serum albumin[J]. RSC Advances,2015,5(84):68397-68403. doi: 10.1039/C5RA11061K
    [18]
    SUTAR D S, NARAYANAM P K, SINGH G, et al. Spectroscopic studies of large sheets of graphene oxide and reduced graphene oxide monolayers prepared by Langmuir-Blodgett technique[J]. Thin Solid Films,2012,520(18):5991-5996. doi: 10.1016/j.tsf.2012.05.018
    [19]
    常会, 范文娟, 曾成华, 等. 氨基功能化磁性氧化石墨烯吸附亚甲基蓝的性能探讨[J]. 冶金分析, 2019, 39(8):52-60.

    CHANG H, FAN W J, ZENG C H, et al. Discussion on adsorption property of amino-functionalized magnetic graphene oxide to methylene blue[J]. Metallurgical Analysis,2019,39(8):52-60(in Chinese).
    [20]
    龚新怀, 辛梅华, 李明春, 等. 磁性响应茶渣制备及其对水溶液中亚甲基蓝的吸附[J]. 化工进展, 2019, 38(2):1113-1121.

    GONG X H, XIN M H, LI M C, et al. Preparationof magnetically responsive tea waste andit's adsorption of methylene blue from aqueous[J]. Chemical Industry and Engineering Progress,2019,38(2):1113-1121(in Chinese).
    [21]
    ZHANG, Y, WEN, G, FAN, S, et al. Partially reduced and nitrogen-doped graphene oxides with phenylethylamine for high-performance supercapacitors[J]. Journal of Materials Science,2018,53(16):11715-11727. doi: 10.1007/s10853-018-2471-5
    [22]
    于长江, 王苗, 董心雨, 等. 海藻酸钙@Fe3O4/生物碳磁性复合材料的制备及其对Co(Ⅱ)的吸附性能和机制[J]. 复合材料学报, 2018, 35(6):1549-1557.

    YU C J, WANG M, DONG X Y, et al. Preparationand characterization of calcium alginate@Fe3O4/biochar magnetic microsphereand its adso[J]. Acta Materiae Compositae Sinica,2018,35(6):1549-1557(in Chinese).
    [23]
    姚时, 张鸣帅, 李林璇, 等. 茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理[J]. 环境化学, 2018, 37(1):96-107. doi: 10.7524/j.issn.0254-6108.2017050401

    YAO S, ZHANG M S, LI L X, et al. Preparationof tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution[J]. Environmental Cheistry,2018,37(1):96-107(in Chinese). doi: 10.7524/j.issn.0254-6108.2017050401
    [24]
    朱脉勇, 陈齐, 童文杰, 等. 四氧化三铁纳米材料的制备与应用[J]. 化学进展, 2017, 29(11):1366-1394.

    ZHU M Y, CHEN Q, TONG W J, et al. Preparation and application of Fe3O4 nanomaterials[J]. Progress in Chemistry,2017,29(11):1366-1394(in Chinese).
    [25]
    史月月, 单锐, 袁浩然. 改性稻壳生物炭对水溶液中甲基橙的吸附效果与机制[J]. 环境科学, 2019, 40(6):2783-2792.

    SHI Y Y, SHAN R, YUAN H R. Effect and mechanisms of methyl orange removal from aqueous solutions by modified riceshell biochar[J]. Environmental Science,2019,40(6):2783-2792(in Chinese).
    [26]
    常春, 刘天琪, 王瑀婷, 等. 水热法制备玉米叶基生物炭对亚甲基蓝的吸附性能研究[J]. 环境科学学报, 2017, 37(7):2680-2690.

    CHANG C, LIU T Q, WANG Y T, etal. Hydrothermal preparation of maize leaf based biochar and its adsorption performance for methylene blue[J]. Acta Scientiae Circumstantiae,2017,37(7):2680-2690(in Chinese).
    [27]
    吴艳, 罗汉金, 王侯. 改性木屑对水中刚果红的吸附性能研究[J]. 环境科学学报, 2014, 34(7):1680-1688.

    WU Y, LUO H J, WANG H. Adsorption properties of modified sawdust for conge red removal from wastewater[J]. Acta Scientiae Circumstantiae,2014,34(7):1680-1688(in Chinese).
    [28]
    布林朝克, 郭婷, 张邦文, 等. 部分还原氧化石墨烯-Fe3O4对水中Mn(Ⅱ)的快速去除[J]. 高等学校化学学报, 2017, 38(2):217-224. doi: 10.7503/cjcu20160664

    BULIN C K, GUO T, ZHANG B W, et al. Fast removal of aqueous Mn(II) using partially reduced graphene oxide-Fe3O4[J]. Chemical Journal of Chinese Universities,2017,38(2):217-224(in Chinese). doi: 10.7503/cjcu20160664
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (1300) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return