Volume 38 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
PENG Xiuzhong, FAN Jin. Progressive damage simulation of 3D four-directional braided composites based on surface-interior unit-cells models[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 545-556. doi: 10.13801/j.cnki.fhclxb.20200609.001
Citation: PENG Xiuzhong, FAN Jin. Progressive damage simulation of 3D four-directional braided composites based on surface-interior unit-cells models[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 545-556. doi: 10.13801/j.cnki.fhclxb.20200609.001

Progressive damage simulation of 3D four-directional braided composites based on surface-interior unit-cells models

doi: 10.13801/j.cnki.fhclxb.20200609.001
  • Received Date: 2020-04-16
  • Accepted Date: 2020-06-04
  • Available Online: 2020-06-09
  • Publish Date: 2021-02-15
  • To accurately predict the longitudinal tensile mechanical properties of 3D four-directional braided composites, parameter modeling for surface and interior unit-cells mesoscopic solid models was implemented and the deviation of yarn spatial traces and squeeze deformation of yarn cross-section were considered in the surface unit-cell model. Voxel mesh was used to discrete models on which appropriate boundary conditions were imposed and damage models for each constituent of composites were added into a user-defined material subroutine (UMAT) in finite element analysis software ABAQUS. By simulation analysis of surface-interior unit-cells models for 3D four-directional carbon fiber/epoxy braided composites with 30° and 45° interior braiding angles respectively, using the volume-weighted average method, longitudinal tensile modulus and strength for braided composites specimens with different thicknesses were predicted. The progressive damage process of composites was studied by counting the number of integration points with the same damage modes. Results show that the longitudinal tensile mechanical properties predicted based on surface-interior unit-cells models for 3D four-directional braided composites agree well with experimental results, and damage analysis results reflect reasonably progressive damage process of surface and interior unit-cells.

     

  • loading
  • [1]
    XU K, QIAN X M, DUAN D H, et al. A novel macro-meso finite element method for the mechanical analysis of 3D braided composites[J]. Mechanics of Materials,2018,126:163-175. doi: 10.1016/j.mechmat.2018.08.007
    [2]
    ZHANG C, XU X W. Finite element analysis of 3D braided composites based on three unit-cells models[J]. Compo-site Structures,2013,98:130-142. doi: 10.1016/j.compstruct.2012.11.003
    [3]
    许善迎, 谭焕成, 关玉璞, 等. 三维四向编织复合材料力学性能预测及实验验证[J]. 材料工程, 2018, 46(6):132-140. doi: 10.11868/j.issn.1001-4381.2016.001135

    XU Shanying, TAN Huancheng, GUAN Yupu, et al. Predication and experimental verification on mechanical properties of three-dimensional and four-direction braided composites[J]. Journal of Materials Engineering,2018,46(6):132-140(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.001135
    [4]
    徐焜, 许希武. 三维编织复合材料弹性性能数值预测及细观应力分析[J]. 复合材料学报, 2007, 24(3):178-185. doi: 10.3321/j.issn:1000-3851.2007.03.032

    XU Kun, XU Xiwu. Prediction of elastic constants and simulation of stress field of 3D braided composites based on the finite element method[J]. Acta Materiae Compositae Sinica,2007,24(3):178-185(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.03.032
    [5]
    FANG G D, LIANG J, LU Q, et al. Investigation on the compressive properties of the three dimensional four-directional braided composites[J]. Composite Structures,2011,93(2):392-405. doi: 10.1016/j.compstruct.2010.09.002
    [6]
    WANG B, FANG G D, LIU S, et al. Progressive damage analysis of 3D braided composites using FFT-based method[J]. Composite Structures,2018,192:255-263. doi: 10.1016/j.compstruct.2018.02.040
    [7]
    HE C W, GE J R, QI D X, et al. A multiscale elasto-plastic damage model for the nonlinear behavior of 3D braided composites[J]. Composites Science and Technology,2019,171:21-33. doi: 10.1016/j.compscitech.2018.12.003
    [8]
    张芳芳, 姜文光, 刘才, 等. 基于区域叠合技术的三维编织复合材料渐进损伤过程数值模拟[J]. 复合材料学报, 2013, 30(6):227-236. doi: 10.3969/j.issn.1000-3851.2013.06.034

    ZHANG Fangfang, JIANG Wenguang, LIU Cai, et al. Simulation of progressive damage of 3D braided composites using domain superposition technique[J]. Acta Materiae Compositae Sinica,2013,30(6):227-236(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.034
    [9]
    WANG Y Q, WANG A S D. Microstructure/property relationships in three-dimensionally braided fiber compo-sites[J]. Composites Science and Technology,1995,53(2):213-222. doi: 10.1016/0266-3538(95)00021-6
    [10]
    程震, 石多奇, 景鑫, 等. 三维四向编织陶瓷基复合材料改进模型及刚度预报[J]. 复合材料学报, 2016, 33(6):1287-1296.

    CHENG Zhen, SHI Duoqi, JING Xin, et al. Improved model and stiffness prediction of 3D four-directional braided ceramic-matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(6):1287-1296(in Chinese).
    [11]
    刘振国, 李东颖, 张帆, 等. 考虑纤维束间粘接层的三维四向编织复合材料弹性性能数值预测[J]. 复合材料学报, 2011, 28(6):223-229.

    LIU Zhenguo, LI Dongying, ZHANG Fan, et al. Numerical prediction for the elastic properties of 3D 4-directional braided composites considering adhesive layers[J]. Acta Materiae Compositae Sinica,2011,28(6):223-229(in Chinese).
    [12]
    王荣桥, 刘茜, 胡殿印, 等. 一种改进的三维四向编织复合材料单胞模型及宏观弹性常数预测方法[J]. 复合材料学报, 2017, 34(9):1973-1981.

    WANG Rongqiao, LIU Xi, HU Dianyin, et al. Improved unit cell model and elastic constant prediction method of 3D four-directional braided composites[J]. Acta Materiae Compositae Sinica,2017,34(9):1973-1981(in Chinese).
    [13]
    张超, 周晔欣, 杨志贤, 等. 三维四向编织复合材料界面损伤机理数值分析[J]. 复合材料学报, 2016, 33(9):1989-1998.

    ZHANG Chao, ZHOU Yexin, YANG Zhixian, et al. Numerical analysis on interface damage mechanisms of 3D four-directional braided composites[J]. Acta Materiae Compo-sitae Sinica,2016,33(9):1989-1998(in Chinese).
    [14]
    FANG G D, LIANG J, WANG Y, et al. The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites[J]. Composites Part A: Applied Science and Manufacturing,2009,40(4):343-350. doi: 10.1016/j.compositesa.2008.12.007
    [15]
    王宝来. 三维编织复合材料的力学性能和尺寸效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.

    WANG Baolai. Investigation on the mechanical properties and size effect of three-dimensional braided composites[D]. Harbin: Harbin Institute of Technology, 2009(in Chinese).
    [16]
    XU K, QIAN X M. Microstructure analysis and multi-unit cell model of three dimensionally four-directional braided composites[J]. Applied Composite Materials,2015,22(1):29-50. doi: 10.1007/s10443-014-9396-1
    [17]
    SHERBURN M. Geometric and mechanical modelling of textiles[D]. Nottingham: University of Nottingham, 2007.
    [18]
    LIN H, BROWN L P, LONG A C. Modelling and simulating textile structures using TexGen[J]. Advanced Materials Research,2011,331:44-47. doi: 10.4028/www.scientific.net/AMR.331.44
    [19]
    SHOKRIEH M M, MAZLOOMI M S. A new analytical model for calculation of stiffness of three-dimensional four-directional braided composites[J]. Composite Structures,2012,94(3):1005-1015. doi: 10.1016/j.compstruct.2011.09.010
    [20]
    FANG G D, EL SAID B, IVANOV D, et al. Smoothing artificial stress concentrations in voxel-based models of textile composites[J]. Composites Part A: Applied Science and Manufacturing,2016,80:270-284. doi: 10.1016/j.compositesa.2015.10.025
    [21]
    DOITRAND A, FAGIANO C, IRISARRI F X, et al. Comparison between voxel and consistent meso-scale models of woven composites[J]. Composites Part A: Applied Science and Manufacturing,2015,73:143-154. doi: 10.1016/j.compositesa.2015.02.022
    [22]
    XIA Z H, ZHANG Y F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures,2003,40(8):1907-1921. doi: 10.1016/S0020-7683(03)00024-6
    [23]
    ZHANG C, CURIEL-SOSA J L, BUI T Q. Comparison of periodic mesh and free mesh on the mechanical properties prediction of 3D braided composites[J]. Composite Structures,2017,159:667-676. doi: 10.1016/j.compstruct.2016.10.012
    [24]
    WANG R Q, ZHANG L, HU D Y, et al. A novel approach to impose periodic boundary condition on braided compo-site RVE model based on RPIM[J]. Composite Structures,2017,163:77-88. doi: 10.1016/j.compstruct.2016.12.032
    [25]
    ZHANG D T, CHEN L, WANG Y J, et al. Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model[J]. Journal of Materials Science,2017,52(11):6814-6836. doi: 10.1007/s10853-017-0921-0
    [26]
    CHAMIS C C. Mechanics of composites materials: Past, present, and future[J]. Journal of Composites Technology and Research,1989,11(1):3-14. doi: 10.1520/CTR10143J
    [27]
    RUIJTER W. Analysis of mechanical properties of woven textile composites as a function of textile geometry[D]. Nottingham: University of Nottingham, 2009.
    [28]
    GREEN S D, MATVEEV M Y, LONG A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Composite Structures,2014,118:284-293. doi: 10.1016/j.compstruct.2014.07.005
    [29]
    中国国家标准化管理委员会. 三维编织物及其树脂基复合材料拉伸性能试验方法: GB/T 33613[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People’s Republic of China. Test method for tensile properties of 3D braided fabric and its polymer matrix composites: GB/T 33613[S]. Beijing: China Standards Press, 2017(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views (1829) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return