Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
CUI Yiwei, WEI Ya. A review of thermoelectric effect of cement-based composites: Mechanism, material, factor and application[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2077-2093. doi: 10.13801/j.cnki.fhclxb.20200423.002
Citation: CUI Yiwei, WEI Ya. A review of thermoelectric effect of cement-based composites: Mechanism, material, factor and application[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2077-2093. doi: 10.13801/j.cnki.fhclxb.20200423.002

A review of thermoelectric effect of cement-based composites: Mechanism, material, factor and application

doi: 10.13801/j.cnki.fhclxb.20200423.002
  • Received Date: 2020-03-23
  • Accepted Date: 2020-04-19
  • Available Online: 2020-04-24
  • Publish Date: 2020-09-15
  • Incorporating functional fillers into the cement-based material can enable them to obtain the thermoelectric effect of converting thermal energy into electrical energy, which can be used in energy harvesting, concrete structure health monitoring and intelligent transportation system. This paper summarizes the thermoelectric effect mechanism, functional fillers, fabrication process and engineering application of thermoelectric cement-based composites (TECC). Particularly, this paper mainly focuses on the enhancement effect and mechanism of different functional fillers on the thermoelectric effect of TECC, as well as the effect of dispersion degree of functional filler, moisture, fatigue load, temperature cycle and other factors on the thermoelectric effect of TECC. This review points out the new research direction of TECC in theory and application, which will guide the experimental design and performance improvement of the thermoelectric effect of cement-based composites.

     

  • loading
  • [1]
    TZOUNIS L, LIEBSCHER M, FUGE R, et al. P- and n-type thermoelectric cement composites with CVD grown p- and n-doped carbon nanotubes: Demonstration of a structural thermoelectric generator[J]. Energy and Buildings,2019,191:151-163. doi: 10.1016/j.enbuild.2019.03.027
    [2]
    WEI J, ZHAO L, ZHANG Q, et al. Enhanced thermoelectric properties of cement-based composites with expanded graphite for climate adaptation and large-scale energy harvesting[J]. Energy and Buildings,2018,159:66-74. doi: 10.1016/j.enbuild.2017.10.032
    [3]
    GOMIS J, GALAO O, GOMIS V, et al. Self-heating and deicing conductive cement: Experimental study and modeling[J]. Construction and Building Materials,2015,75:442-449. doi: 10.1016/j.conbuildmat.2014.11.042
    [4]
    SUN M, LI Z, LIU Q, et al. A study on thermal self-diagnostic and self-adaptive smart concrete structures[J]. Cement and Concrete Research,2000,30(8):1251-1253. doi: 10.1016/S0008-8846(00)00284-2
    [5]
    WEN S, CHUNG D D L. Cement-based thermocouples[J]. Cement and Concrete Research,2001,31(3):507-510. doi: 10.1016/S0008-8846(00)00391-4
    [6]
    SUN M, LI Z, MAO Q, et al. Study on the hole conduction phenomenon in carbon fiber-reinforced concrete[J]. Cement and Concrete Research,1998,28(4):549-554. doi: 10.1016/S0008-8846(98)00011-8
    [7]
    WANG Z, WANG Z, NING M, et al. Electro-thermal properties and Seebeck effect of conductive mortar and its use in self-heating and self-sensing system[J]. Ceramics International,2017,43(12):8685-8693. doi: 10.1016/j.ceramint.2017.03.202
    [8]
    PICHÓR W, FRĄC M. Multifunctional cement composites with expanded graphite for temperature monitoring of buildings[J]. Advances in Cement Research,2020,32(9):413-420.
    [9]
    魏剑, 赵莉莉, 张倩, 等. 碳纤维水泥基复合材料Seebeck效应研究现状[J]. 材料导报, 2017, 31(1):84-89. doi: 10.11896/j.issn.1005-023X.2017.01.011Development

    WEI Jian, ZHAO Lili, ZHANG Qian, et al. Development of Seebeck effect of carbon fiber reinforced cement-based composites[J]. Materials Reports,2017,31(1):84-89(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.01.011Development
    [10]
    DONG W, LI W, TAO Z, et al. Piezoresistive properties of cement-based sensors: Review and perspective[J]. Construction and Building Materials,2019,203:146-163. doi: 10.1016/j.conbuildmat.2019.01.081
    [11]
    GARCÍA Á, SCHLANGEN E, VAN DE VEN M, et al. Electrical conductivity of asphalt mortar containing conductive fibers and fillers[J]. Construction and Building Materials,2009,23(10):3175-3181. doi: 10.1016/j.conbuildmat.2009.06.014
    [12]
    TZOUNIS L, GRAVALIDIS C, VASSILIADOU S, et al. Fiber yarns/CNT hierarchical structures as thermoelectric generators[J]. Materials Today: Proceedings,2007,4(7):7070-7075.
    [13]
    WEN S, CHUNG D D L. Effect of fiber content on the thermoelectric behavior of cement[J]. Journal of Materials Science,2004,39(13):4103-4106. doi: 10.1023/B:JMSC.0000033389.83459.8f
    [14]
    WEI J, ZHANG Q, ZHAO L, et al. Enhanced thermoelectric properties of carbon fiber reinforced cement composites[J]. Ceramics International,2016,42(10):11568-11573. doi: 10.1016/j.ceramint.2016.04.014
    [15]
    SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials,2008,7(2):105-114. doi: 10.1038/nmat2090
    [16]
    SUN M, LI Z, MAO Q, et al. Thermoelectric percolation phenomena in carbon fiber-reinforced concrete[J]. Cement and Concrete Research,1998,28(12):1707-1712. doi: 10.1016/S0008-8846(98)00161-6
    [17]
    DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Advanced Materials,2007,19(8):1043-1053. doi: 10.1002/adma.200600527
    [18]
    WEN S, CHUNG D D L. Seebeck effect in carbon fiber-reinforced cement[J]. Cement and Concrete Research,1999,29(12):1989-1993. doi: 10.1016/S0008-8846(99)00185-4
    [19]
    SUN M, LI Z, MAO Q, et al. A study on thermal self-monitoring of carbon fiber reinforced concrete[J]. Cement and Concrete Research,1999,29(5):769-771. doi: 10.1016/S0008-8846(99)00006-X
    [20]
    陈兵, 姚武, 吴科如. 掺碳纤维和微细钢纤维水泥砂浆热电性能研究[J]. 建筑材料学报, 2004, 7(3):261-268. doi: 10.3969/j.issn.1007-9629.2004.03.003

    CHEN Bing, YAO Wu, WU Keru. Studies on the thermoelectric property of cement mortar with carbon fiber and micro steel fiber[J]. Journal of Building Materials,2004,7(3):261-268(in Chinese). doi: 10.3969/j.issn.1007-9629.2004.03.003
    [21]
    WEI J, NIE Z, HE G, et al. Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites[J]. RSC Advances,2014,4(89):48128-48134. doi: 10.1039/C4RA07864K
    [22]
    BAHAR D, SALIH Y. Thermoelectric behavior of carbon fiber reinforced lightweight concrete with mineral admixtures[J]. New Carbon Materials,2008,23(1):21-24. doi: 10.1016/S1872-5805(08)60009-8
    [23]
    WEN S, CHUNG D D L. Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers[J]. Cement and Concrete Research,2000,30(8):1295-1298. doi: 10.1016/S0008-8846(00)00341-0
    [24]
    ZUO J, YAO W, QIN J. Enhancing the thermoelectric properties in carbon fiber/cement composites by using steel slag[J]. Key Engineering Materials,2013,539:103-107.
    [25]
    唐祖全, 童成丰, 钱觉时, 等. 钢渣混凝土的Seebeck效应研究[J]. 重庆建筑大学学报, 2008, 30(3):125-128.

    TANG Zuquan, TONG Chengfeng, QIAN Jueshi, et al. Study on the Seebeck effect in steel-slag concrete[J]. Journal of Chongqing Jianzhu University,2008,30(3):125-128(in Chinese).
    [26]
    WEI J, HAO L, HE G, et al. Thermoelectric power of carbon fiber reinforced cement composites enhanced by Ca<sub>3</sub>Co<sub>4</sub>O<sub>9</sub>[J]. Applied Mechanics and Materials,2013,320:354-357.
    [27]
    WEI J, HAO L, HE G, et al. Enhanced thermoelectric effect of carbon fiber reinforced cement composites by metallic oxide/cement interface[J]. Ceramics International,2014,40(6):8261-8263. doi: 10.1016/j.ceramint.2014.01.024
    [28]
    姚武, 夏强. 碲化铋-碳纤维水泥基材料的制备及热电性能[J]. 功能材料, 2014, 45(15):15134-15137,15142. doi: 10.3969/j.issn.1001-9731.2014.15.029

    YAO Wu, XIA Qiang. Preparation and thermoelectric properties of bismuth telluride-carbon fiber reinforced cement composites[J]. Journal of Functional Materials,2014,45(15):15134-15137,15142(in Chinese). doi: 10.3969/j.issn.1001-9731.2014.15.029
    [29]
    JI T, ZHANG X, LI W. Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings[J]. Construction and Building Materials,2016,115:576-581. doi: 10.1016/j.conbuildmat.2016.04.035
    [30]
    JI T, ZHANG X, ZHANG X, et al. Effect of manganese dioxide nanorods on the thermoelectric properties of cement composites[J]. Journal of Materials in Civil Engineering,2018,30(9):04018224. doi: 10.1061/(ASCE)MT.1943-5533.0002401
    [31]
    GHAHARI S A, GHAFARI E, LU N. Effect of ZnO nanoparticles on thermoelectric properties of cement composite for waste heat harvesting[J]. Construction and Building Materials,2017,146:755-763. doi: 10.1016/j.conbuildmat.2017.04.165
    [32]
    肖龙, 季涛, 廖晓, 等. 氧化镍水泥基复合材料热电性能研究[J]. 新型建筑材料, 2019, 46(3):32-35. doi: 10.3969/j.issn.1001-702X.2019.03.009

    XIAO Long, JI Tao, LIAO Xiao, et al. Thermoelectric property of cement composites with nickel oxide[J]. New Building Materials,2019,46(3):32-35(in Chinese). doi: 10.3969/j.issn.1001-702X.2019.03.009
    [33]
    CAO H, YAO W, QIN J. Seebeck effect in graphite-carbon fiber cement based composite[J]. Advanced Materials Research,2010,177:566-569.
    [34]
    赵文艳, 张文福, 马昌恒, 等. 石墨导电混凝土力学性能与热电特性[J]. 大庆石油学院学报, 2008, 32(6):83-85,92.

    ZHAO Wenyan, ZHANG Wenfu, MA Changheng, et al. Mechanical and thermoelectric property of graphite electrically conductive concrete[J]. Journal of Daqing Petroleum Institute,2008,32(6):83-85,92(in Chinese).
    [35]
    WEI J, ZHANG Q, ZHAO L, et al. Effect of moisture on the thermoelectric properties in expanded graphite/carbon fiber cement composites[J]. Ceramics International,2017,43(14):10763-10769. doi: 10.1016/j.ceramint.2017.05.088
    [36]
    ZUO J, YAO W, WU K. Seebeck effect and mechanical properties of carbon nanotube-carbon fiber/cement nanocomposites[J]. Fullerenes, Nanotubes and Carbon Nanostructures,2015,23(5):383-391.
    [37]
    WEI J, FAN Y, ZHAO L, et al. Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear[J]. Ceramics International,2018,44(6):5829-5833. doi: 10.1016/j.ceramint.2018.01.074
    [38]
    GHOSH S, HARISH S, ROCKY K A, et al. Graphene enhanced thermoelectric properties of cement based composites for building energy harvesting[J]. Energy and Buildings,2019,202:109419.
    [39]
    WEN S, CHUNG D D L. Thermoelectric behavior of carbon-cement composites[J]. Carbon,2002,13(40):2495-2497.
    [40]
    蒋正武, 孙振平, 王新友. 导电混凝土技术[J]. 混凝土, 2000(9):55-58.

    JIANG Zhengwu, SUN Zhenping, WANG Xinyou. The techniques of conductive concrete[J]. Concrete,2000(9):55-58(in Chinese).
    [41]
    PICHÓR W. Dynamic electrical properties of lightweight cement mortars with waste graphite additive[J]. Kompozyty (Composites),2010,19:175.
    [42]
    PICHÓR W, FRĄC M. Thermoelectric properties of expanded graphite as filler of multifunctional cement composites[J]. Composites Theory and Practice,2012,12(3):205-209.
    [43]
    HAN B, SUN S, DING S, et al. Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A: Applied Science and Manufacturing,2015,70:69-81. doi: 10.1016/j.compositesa.2014.12.002
    [44]
    KONSTA-GDOUTOS M S, BATIS G, DANOGLIDIS P A, et al. Effect of CNT and CNF loading and count on the corrosion resistance, conductivity and mechanical properties of nanomodified OPC mortars[J]. Construction and Building Materials,2017,147:48-57.
    [45]
    SOBOLKINA A, MECHTCHERINE V, KHAVRUS V, et al. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix[J]. Cement and Concrete Composites,2012,34(10):1104-1113. doi: 10.1016/j.cemconcomp.2012.07.008
    [46]
    FOLDYNA J, FOLDYNA V, ZELEŇÁK M. Dispersion of carbon nanotubes for application in cement composites[J]. Procedia Engineering,2016,149:94-99. doi: 10.1016/j.proeng.2016.06.643
    [47]
    TAO J, WANG X, WANG Z, et al. Graphene nanoplatelets as an effective additive to tune the microstructures and piezoresistive properties of cement-based composites[J]. Construction and Building Materials,2019,209:665-678. doi: 10.1016/j.conbuildmat.2019.03.173
    [48]
    LI C, THOSTENSON E T, CHOU T W. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites[J]. Applied Physics Letters,2007,91(22):223114. doi: 10.1063/1.2819690
    [49]
    BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials,2011,10(8):569-581. doi: 10.1038/nmat3064
    [50]
    WEN S, CHUNG D D L. Seebeck effect in steel fiber reinforced cement[J]. Cement and Concrete Research,2000,30(4):661-664. doi: 10.1016/S0008-8846(00)00205-2
    [51]
    WEN S, CHUNG D D L. Origin of the thermoelectric behavior of steel fiber cement paste[J]. Cement And Concrete Research,2002,32(5):821-823. doi: 10.1016/S0008-8846(01)00754-2
    [52]
    LIANG D, YANG H, FINEFROCK S W, et al. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting[J]. Nano Letters,2012,12(4):2140-2145. doi: 10.1021/nl300524j
    [53]
    MADAN D, WANG Z, CHEN A, et al. Enhanced performance of dispenser printed MA n-type Bi<sub>2</sub>Te<sub>3</sub> composite thermoelectric generators[J]. ACS Applied Materials <italic>&</italic> Interfaces,2012,4(11):6117-6124.
    [54]
    GE Z, QIN P, HE D, et al. Highly enhanced thermoelectric properties of Bi/Bi<sub>2</sub>S<sub>3</sub> nanocomposites[J]. ACS Applied Materials <italic>&</italic> Interfaces,2017,9(5):4828-4834.
    [55]
    童成丰. 钢渣导电混凝土的温敏性研究[D]. 重庆: 重庆大学, 2007.

    DONG Chengfeng. Study on temperature sensitivity of steel-slag conductive concrete[D]. Chongqing: Chongqing University, 2007(in Chinese).
    [56]
    WANG L, ASLANI F. A review on material design, performance, and practical application of electrically conductive cementitious composites[J]. Construction and Building Materials,2019,229:116892. doi: 10.1016/j.conbuildmat.2019.116892
    [57]
    VAISMAN L, WAGNER H D, MAROM G. The role of surfactants in dispersion of carbon nanotubes[J]. Advances in Colloid and Interface Science,2006,128:37-46.
    [58]
    赵莉莉. 碳材料增强水泥基复合材料热电性能研究[D]. 西安: 西安建筑科技大学, 2017.

    ZHAO Lili. Study on thermoelectric properties of carbon materials reinforced cement-based composites[D]. Xi’an: Xi’an University of Architecture and Technology, 2017(in Chinese).
    [59]
    CAO J, CHUNG D D L. Role of moisture in the Seebeck effect in cement-based materials[J]. Cement and Concrete Research,2005,35(4):810-812. doi: 10.1016/j.cemconres.2004.05.036
    [60]
    魏剑, 薛飞, 王佳敏, 等. 低温循环载荷对碳纤维增强硫铝酸盐水泥基复合材料热电性能的影响研究[J]. 硅酸盐通报, 2018, 37(11):3503-3509,3521.

    WEI Jian, XUE Fei, WANG Jiamin, et al. Effect of low temperature cyclic loads on thermoelectric properties of carbon fiber reinforced sulphoaluminate cementitious composites[J]. Bulletin of the Chinese Ceramic Society,2018,37(11):3503-3509,3521(in Chinese).
    [61]
    YANG Y, LAN J, LI X. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy[J]. Materials Science and Engineering A,2004,380(1-2):378-383. doi: 10.1016/j.msea.2004.03.073
    [62]
    IBARRA Y S D, GAITERO J J, ERKIZIA E, et al. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions[J]. Physica Status Solidi,2006,203(6):1076-1081. doi: 10.1002/pssa.200566166
    [63]
    ZUO J, YAO W, QIN J, et al. Measurements of thermoelectric behavior and microstructure of carbon nanotubes/carbon fiber-cement based composite[J]. Key Engineering Materials,2011,492:242-245. doi: 10.4028/www.scientific.net/KEM.492.242
    [64]
    LIEW K M, KAI M F, ZHANG L W. Carbon nanotube reinforced cementitious composites: An overview[J]. Composites Part A: Applied Science and Manufacturing,2016,91:301-323. doi: 10.1016/j.compositesa.2016.10.020
    [65]
    CHENG X, WANG S, LU L, et al. Influence of preparation process on piezo-conductance effect of carbon fiber sulfoaluminate cement composite[J]. Journal of Composite Materials,2011,45(20):2033-2037. doi: 10.1177/0021998311407990
    [66]
    LIU M, QIN X Y. Enhanced thermoelectric performance through energy-filtering effects in nanocomposites dispersed with metallic particles[J]. Applied Physics Letters,2012,101(13):132103. doi: 10.1063/1.4755768
    [67]
    薛飞. 环境载荷对膨胀石墨/碳纤维增强水泥基复合材料热电性能的影响研究[D]. 西安: 西安建筑科技大学, 2018.

    XUE Fei. Effect of environmental load on thermoelectric properties of expanded graphite/carbon fiber reinforced cement composites[D]. Xi’an: Xi’an University of Architecture and Technology, 2018(in Chinese).
    [68]
    TZOUNIS L. Organic thermoelectrics and thermoelectric generators (TEGs)[M]. London: IntechOpen, 2019.
    [69]
    GAURAV K, PANDEY S K. Efficiency calculation of a thermoelectric generator for investigating the applicability of various thermoelectric materials[J]. Journal of Renewable and Sustainable Energy,2017,9(1):014701. doi: 10.1063/1.4976125
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (1366) PDF downloads(209) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return