Volume 37 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
LI Hong, ZHANG Jing, CHEN Ke, et al. Preparation and properties of hydroxyapatite nanofibers reinforced gelatin hydrogel modified by methacrylic anhydride composite hydrogel[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2572-2581. doi: 10.13801/j.cnki.fhclxb.20200423.001
Citation: LI Hong, ZHANG Jing, CHEN Ke, et al. Preparation and properties of hydroxyapatite nanofibers reinforced gelatin hydrogel modified by methacrylic anhydride composite hydrogel[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2572-2581. doi: 10.13801/j.cnki.fhclxb.20200423.001

Preparation and properties of hydroxyapatite nanofibers reinforced gelatin hydrogel modified by methacrylic anhydride composite hydrogel

doi: 10.13801/j.cnki.fhclxb.20200423.001
  • Received Date: 2019-11-27
  • Accepted Date: 2020-01-27
  • Available Online: 2020-04-23
  • Publish Date: 2020-10-15
  • Hydroxyapatite (HAP) nanofibers with ultra-high aspect ratio were prepared by a solvothermal method. HAP nanofibers reinforced composite hydrogel combined with gelatin modified by methacrylic anhydride(GelMA) was prepared by UV crosslinking. The composite hydrogel was characterized by SEM, XRD, mechanical test, swelling test, degradation test and cell culture, etc. The results of the cross-sectional morphology show that the HAP fiber/GelMA composite hydrogel has 3D porous structure with porous structure. Mechanical experiments show that HAP nanofibers can effectively enhance the elastic modulus of the composite hydrogel. With the increase of HAP nanofibers addition, the mechanical performance enhancement effect of the HAP/GelMA composite hydrogel is more obvious. The swelling experiments show that the swelling rate does not change significantly when the mass fraction of HAP fiber is 5.2wt%-14.2wt%, while the swelling rate decreases when the mass fraction is 18.2wt%. The degradation experiments show that the addition of HAP nanofibers can effectively maintain the structure of hydrogel and make it more stable and controllable. The cell co-culture experiments show that the HAP nanofibers/GelMA composite hydrogel can provide a great 3D growth environment for encapsulated cells, showing excellent biocompatibility. The HAP nanofibers/GelMA composite hydrogel prepared in the experiment has a good application prospect in the field of tissue engineering.

     

  • loading
  • [1]
    LUTOLF M P, HUBBELL J A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering[J]. Nature Biotechnology,2005,23(1):47-55. doi: 10.1038/nbt1055
    [2]
    HUNT JA, RUI C, VEEN TV, et al. Hydrogels for tissue engineering and regenerative medicine[J]. Journal of Materials Chemistry B,2014,2(33):5319. doi: 10.1039/C4TB00775A
    [3]
    ZUO Y, LIU X, WEI D, et al. Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon[J]. ACS Applied Materials & Interfaces,2015,7(19):10386-10394.
    [4]
    李思迪, 赵孔银, 魏俊富, 等. 磷酸三钙/海藻酸钙复合平板膜的制备及其力学性能[J]. 复合材料学报, 2014, 31(4):1106-1111.

    LI S D, ZHAO K Y, WEI J F, et al. Preparation and mechanical properties of tricalcium phosphate/calcium alginate composite flat sheet membranes[J]. Acta Materiae Compositae Sinica,2014,31(4):1106-1111(in Chinese).
    [5]
    刘东, 赵孔银, 宋欢语, 等. 硅酸钙-海藻酸钙复合水凝胶膜的制备及表征[J]. 复合材料学报, 2017, 34(11):23-28.

    LIU D, ZHAO K Y, SONG H Y, et al. Preparation and characterization of calcium silicate-calcium alginate composite hydrogel film[J]. Acta Materiae Composite Sinica,2017,34(11):23-28(in Chinese).
    [6]
    乔堃 , 郑裕东, 李佳琪, 等. 纳米细菌纤维素/聚乙烯醇复合水凝胶在模拟体液中的疲劳行为[J]. 复合材料学报, 2015, 32(5):45-52.

    QIAO K, ZHENG Y D, LI J Q, et al. Fatigue behavior of nano bacterial cellulose/poly(vinyl alcohol) composite hydrogel in simulated body fluid[J]. Acta Materiae Composite Sinica,2015,32(5):45-52(in Chinese).
    [7]
    徐朝阳, 李健昱, 石小梅, 等. 聚乙二醇改性纳米纤维素/聚乙烯醇复合水凝胶的制备及性能[J]. 复合材料学报, 2017, 34(4):708-713.

    XU Z Y, LI J Y, SHI X M, et al. Preparation and properties of polyethylene glycol-modified cellulose nanofibers/polyvinyl alcohol composite hydrogel[J]. Acta Materiae Composite Sinica,2017,34(4):708-713(in Chinese).
    [8]
    ZHENG Y, HUANG K, YOU X, et al. Hybrid hydrogels with high strength and biocompatibility for bone regeneration[J]. International Journal of Biological Macromolecules, 2017, 104(Pt A):1143-1149.
    [9]
    BING X, ZHENG P, FEI G, et al. A mineralized high strength and tough hydrogel for skull bone regeneration[J]. Advanced Functional Materials,2016,27(4):1604327.
    [10]
    龙星潼, 管娟, 陈新, 等. 基于再生丝蛋白水凝胶的研究前沿[J]. 高等学校化学学报, 2018, 39(1):1-11. doi: 10.7503/cjcu20170635

    LONG X T, GUAN J, CHEN X, et al. Progress in hydrogels based on regenerated silk fibroin[J]. Chemical Journal of Chinese Universities,2018,39(1):1-11(in Chinese). doi: 10.7503/cjcu20170635
    [11]
    BRUGGEMAN K F, WILLIAMS R J, NISBET D R. Dynamic and responsive growth factor delivery from electrospun and hydrogel tissue engineering materials[J]. Advanced Healthcare Materials,2018,7(1):1700836. doi: 10.1002/adhm.201700836
    [12]
    文静, 徐志民, 齐德胜, 等. PLG-g-TA/RGD酶催化交联水凝胶用于透明软骨细胞黏附和三维细胞培养[J]. 高等学校化学学报, 2019, 40(9):2020-2027. doi: 10.7503/cjcu20190148

    WEN J, XU Z M, QI D S, et al. PLG-g-TA/RGD enzyme-catalyzed crosslinked hydrogel for adhesion and three-dimensional culture of hyaline chondrocytes[J]. Chemical Journal of Chinese Universities,2019,40(9):2020-2027(in Chinese). doi: 10.7503/cjcu20190148
    [13]
    GU L, ZHANG J, LI L, et al. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration[J]. Biomedical Materials,2019,14(4):045001. doi: 10.1088/1748-605X/ab1583
    [14]
    颜世峰, 王卫东, 任婕, 等. 聚(L-谷氨酸)水凝胶介导羟基磷灰石的生物矿化[J]. 高等学校化学学报, 2019, 40(4):815-823. doi: 10.7503/cjcu20180718

    YAN S F, WANG W D, REN J, et al. Biomimetic mineralization of hydroxyapatite mediated by poly(L-glutamic acid) hydrogels in simulated body fluid[J]. Chemical Journal of Chinese Universities,2019,40(4):815-823(in Chinese). doi: 10.7503/cjcu20180718
    [15]
    CUI F Z, LI Y, GE J. Self-assembly of mineralized collagen composites[J]. Materials Science & Engineering R,2007,57(1-6):1-27.
    [16]
    YUAN H, FERNANDES H, HABIBOVIC P, et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(31):13614-13619. doi: 10.1073/pnas.1003600107
    [17]
    SUN T W, ZHU Y J, CHEN F, et al. Ultralong hydroxyapatite nanowire/collagen biopaper with high flexibility, improved mechanical properties and excellent cellular attachment[J]. Chemistry-An Asian Journal,2017,12(6):655-664. doi: 10.1002/asia.201601592
    [18]
    ZUO Y, XIAO W, CHEN X, et al. Bottom-up approach to build osteon-like structure by cell-laden photo-cross-linkable hydrogel[J]. Chemical Communications,2012,48(26):3170-3172. doi: 10.1039/c2cc16744a
    [19]
    KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity[J]. Biomaterials,2006,27(15):2907-2915. doi: 10.1016/j.biomaterials.2006.01.017
    [20]
    NIU X, LIU Z, TIAN F, et al. Sustained delivery of calcium and orthophosphate ions from amorphous calcium phosphate and poly(L-lactic acid)-based electrospinning nanofibrous scaffold[J]. Scientific Reports,2017,7:45655. doi: 10.1038/srep45655
    [21]
    ZHANG K R, GAO H L, PAN X F, et al. Multifunctional bilayer nanocomposite guided bone regeneration membrane[J]. Matter,2019,1(3):770-781. doi: 10.1016/j.matt.2019.05.021
    [22]
    汪阮峰, 颜世峰, 胡圳, 等. 原位沉淀法制备CS/nHA多孔复合支架及其性能[J]. 高等学校化学学报, 2019, 40(5):1080-1088. doi: 10.7503/cjcu20180724

    WANG R F, YAN S F, HU Z, et al. Preparation and properties of CS/nHA porous composite scaffold based on in-situ-precipitation method[J]. Chemical Journal of Chinese Universities,2019,40(5):1080-1088(in Chinese). doi: 10.7503/cjcu20180724
    [23]
    MA T, HL G, HP C, et al. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers[J]. Advanced Materials,2018,30(15):1706435. doi: 10.1002/adma.201706435
    [24]
    MAO L B, GAO H L, YAO H B, et al. Synthetic nacre by predesigned matrix-directed mineralization[J]. Science, 2016, 354(6308):107.
    [25]
    崔国廉, 但年华, 但卫华. 基于多巴胺的黏合水凝胶的制备及表征[J]. 高等学校化学学报, 2017, 38(2):318-325. doi: 10.7503/cjcu20160443

    CUI G L, DAN N H, DAN W H. Preparation and characterization of novel dopamine-based bioadhesive hydrogels[J]. Chemical Journal of Chinese Universities,2017,38(2):318-325(in Chinese). doi: 10.7503/cjcu20160443
    [26]
    ZHONG M, SUN J, WEI D, et al. Establishing a cell-affinitive interface and spreading space in a 3D hydrogel by introduction of microcarriers and an enzyme[J]. Journal of Materials Chemistry B,2014,2(38):6601-6610. doi: 10.1039/C4TB00887A
    [27]
    JANG J, OH H, LEE J, et al. A cell-laden nanofiber/hydrogel composite structure with tough-soft mechanical property[J]. Applied Physics Letters,2013,102(21):625.
    [28]
    CHANG S K, YUN J Y, BAHN S Y, et al. A bioinspired dual-crosslinked tough silk protein hydrogel as a protective biocatalytic matrix for carbon sequestration[J]. NPG Asia Materials,2017,9(6):e391. doi: 10.1038/am.2017.71
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (1460) PDF downloads(155) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return