Volume 37 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
WANG Caiping, ZHANG Jiahua, WANG Xiaojie. Tunable mechanical and acoustic properties of anisotropic magnetic polyurethane foams with different carbonyl iron powder magnetic particle contents[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3102-3110. doi: 10.13801/j.cnki.fhclxb.20200401.001
Citation: WANG Caiping, ZHANG Jiahua, WANG Xiaojie. Tunable mechanical and acoustic properties of anisotropic magnetic polyurethane foams with different carbonyl iron powder magnetic particle contents[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3102-3110. doi: 10.13801/j.cnki.fhclxb.20200401.001

Tunable mechanical and acoustic properties of anisotropic magnetic polyurethane foams with different carbonyl iron powder magnetic particle contents

doi: 10.13801/j.cnki.fhclxb.20200401.001
  • Received Date: 2020-01-07
  • Accepted Date: 2020-03-23
  • Available Online: 2020-04-01
  • Publish Date: 2020-12-15
  • Polyurethane foams (PUFs) have been widely used in aircrafts, vehicles and many other facilities for noise control. Magnetic polyurethane foams (MPUFs) are a new kind of smart foams whose mechanical and acoustic properties can be controlled by magnetic fields. In this paper, the anisotropic MPUFs was studied which were prepared by one-step full water foaming method with carbonyl iron powders (CIPs) magnetic particles. During the foaming process, the magnetic field was applied, and the CIPs were arrayed into a chain-like structure along the direction of the magnetic field. The movement of CIPs inside MPUFs under the magnetic field induces a change towards the mechanical and sound absorption properties. The influence of the external magnetic field on the mechanical properties and sound absorption properties of CIPs/MPUFs was investigated by experiments. The results show that under the magnetic field, the storage modulus and loss modulus of CIPs/MPUFs increase with the increase of CIPs content. The variation of the average sound absorption coefficient is between 1% and 7%. For the sample with 5wt% CIPs foamed under 200 mT, the increment of its average sound absorption coefficient under 1.5 A is 6.5%, which is maximum.

     

  • loading
  • [1]
    ZHANG C, LI J, ZHEN H, et al. Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity[J]. Materials & Design,2012,41(Complete):319-325.
    [2]
    王永华. 多级仿生耦合材料吸声性能及机制研究[D]. 长春: 吉林大学, 2014.

    WANG Y H. Research on sound absorption properties and mechanisms of multi-level bionic coupling materials[D]. Changchun: Jilin University, 2014 (in Chinese).
    [3]
    SUNG G, KIM J H. Effect of high molecular weight isocyanate contents on manufacturing polyurethane foams for improved sound absorption coefficient[J]. Korean Journal of Chemical Engineering,2017,34(4):1-7.
    [4]
    SCHÜMANN M, GÜNTHER S, ODENBACH S. The effect of magnetic particles on pore size distribution in soft polyurethane foams[J]. Smart Materials & Structures,2014,23(7):697-707.
    [5]
    GONG Q C, WU J K, GONG X L, et al. Smart polyurethane foam with magnetic field controlled modulus and anisotropic compression property[J]. RSC Advances,2013,3(10):3241-3248. doi: 10.1039/c2ra22824f
    [6]
    SORRENTINOL, AURILIA M, FORTE G, et al. Anisotropic mechanical behavior of magnetically oriented iron particle reinforced foams[J]. Journal of Applied Polymer Science,2010,119(2):1239-1247.
    [7]
    D’AURIA M, DAVINO D, PANTANI R, et al. Polymeric foam-ferromagnet composites as smart lightweight materials[J]. Smart Materials and Structures,2016,25(5):055014. doi: 10.1088/0964-1726/25/5/055014
    [8]
    DAVINO D, MEI P, SORRENTINO L, et al. Polymeric composite foams with properties controlled by the magnetic field[J]. IEEE Transactions on Magnetics,2012,48(11):3043-3046. doi: 10.1109/TMAG.2012.2198634
    [9]
    SCARPA F, BULLOUGH W A, LUMLEY P. Trends in acoustic properties of iron particle seeded auxetic polyurethane foam[C]// 60th Annual Meeting of the Divison of Fluid Dynamics. American Physical Society, 2004: 241-244.
    [10]
    KIM B S, KWON S, JEONG S, et al. Semi-active control of smart porous structure for sound absorption enhancement[J/OL]. Journal of Intelligent Material Systems and Structures, 2019, https://doi.org/10.1177/1045389X19862371
    [11]
    王晓杰, 李彬. 一种智能磁性降噪聚氨酯泡沫的制备方法: 中国, 201410649702.2[P]. 2014-11-17.

    WANG Xiaojie, LI Bin. An intelligent magnetic noise reduction polyurethane foam: China, 201410649702.2[P]. 2014-11-17(in Chinese).
    [12]
    中华人民共和国国家质量监督检验检疫总局. 声学阻抗管中吸声系数和声阻抗的测量第2部分: 传递函数法: GB/T18696.2—2002[S]. 北京: 中国标准出版社, 2002.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Acoustics–Determinatio of sound absorption coefficient and impedance in impedance tubes–Part 2: Transfer function method: GB/T18696.2—2002[S]. Beijing: China Standards Press, 2002 (in Chinese).
    [13]
    SOTO G, CASTRO A, VECHIATTI N, et al. Biobased porous acoustical absorbers made from polyurethane and waste tire particles[J]. Polymer Testing,2017,57:42-51. doi: 10.1016/j.polymertesting.2016.11.010
    [14]
    赵文强. 磁流变塑性体力学性能优化与机理研究[D]. 合肥: 中国科学技术大学, 2019.

    ZHAO Wenqiang. Study on magnetorheological plastomer: The optimization and mechanism of its mechanical properties[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [15]
    CHEN L, GONG X L, JIANG W Q, et al. Investigation on magnetorheological elastomers based on natural rubber[J]. Journal of Materials Science,2007,42(14):5483-5489. doi: 10.1007/s10853-006-0975-x
    [16]
    MUHAZELI N S, NORDIN N A, MAZLAN S A, et al. Characterization of morphological and rheological properties of rigid magnetorheological foams via in situ fabrication method[J]. Journal of Materials Science, 2019, 54(2): 13821.
    [17]
    许阳光. 新型磁敏智能软材料(磁流变塑性体)的制备、表征及机理研究[D]. 合肥: 中国科学技术大学, 2014.

    XU Yangguang. Preparation, characterization and mechanism of a novel magneto-sensitive smart soft materials: Magnetorheological plastomers[D]. Hefei: University of science and technology of China, 2014(in Chinese).
    [18]
    SCHÜMANN, M, SEELIGN, ODENBACH S. The effect of external magnetic fields on the pore structure of polyurethane foams loaded with magnetic microparticles[J]. Smart Materials and Structures,2015,24(10):105028. doi: 10.1088/0964-1726/24/10/105028
    [19]
    王彩萍, 孙天宇, 王晓杰. 磁性聚氨酯泡沫的微观形貌及低频吸声性能[J]. 复合材料学报, 2018, 35(1):24-29.

    WANG Caiping, SUN Tianyu, WANG Xiaojie. Study on micro topography and low frequency sound absorption performance of magnetic polyurethane foam[J]. Acta Materiae Compositae Sinica,2018,35(1):24-29(in Chinese).
    [20]
    钟祥璋. 建筑吸声材料与隔声材料[M]. 北京: 化学工业出版社, 2012.

    ZHONG X Z. Building sound-absorbing materials and insulation materials[M]. Beijing: Chemical Industry Press, 2012(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (872) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return