Volume 37 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
GUAN Jiju, LIU Deli, WANG Yong, et al. Electroconductivity and wettability of nanofluids prepared by carbon nanotubes/oleic acid composite[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2582-2589. doi: 10.13801/j.cnki.fhclxb.20200313.001
Citation: GUAN Jiju, LIU Deli, WANG Yong, et al. Electroconductivity and wettability of nanofluids prepared by carbon nanotubes/oleic acid composite[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2582-2589. doi: 10.13801/j.cnki.fhclxb.20200313.001

Electroconductivity and wettability of nanofluids prepared by carbon nanotubes/oleic acid composite

doi: 10.13801/j.cnki.fhclxb.20200313.001
  • Received Date: 2019-11-13
  • Accepted Date: 2020-02-25
  • Available Online: 2020-03-13
  • Publish Date: 2020-10-15
  • The carbon nanotubes(CNTs)/oleic acid (OA) composite was prepared by filling OA into CNTs, then the nanofluid was prepared by the CNTs/oleic acid composite as additive. The conductivity and wettability of the nanofluid were investigated, and the effects of the content, acidification time, test temperature and electric field on the above properties were also studied. The results show that the composite is successfully formed with a filling rate of about 20%. During the preparing process, the end face of the CNTs is chemically modified, and the best acidification time is about 8 h. Compared with the acidified CNTs, the CNTs/OA composite has better surface activity and dispersion in the base solution, which can better improve the conductivity and wettability of the nanofluid, and the optimal content of the composite is about 0.1%. Under the condition of electrowetting, the wettability of the nanofluid with the higher content of the composite can be improved more obviously with the increase of voltage. This may be because the conductivity and capacitance of the CNTs are improved after the filling of OA, and the nanofluid prepared by the composite also has better conductivity and capacitance.

     

  • loading
  • [1]
    WILLIAMS J A. The action of lubricants in metal cutting[J]. Journal Mechanical Engineering Science,1977,19(5):202-212. doi: 10.1243/JMES_JOUR_1977_019_044_02
    [2]
    韩荣第, 张悦, 王扬. 刀—屑接触区摩擦润滑的毛细管模型研究[J]. 润滑与密封, 2009, 34(2):1-4. doi: 10.3969/j.issn.0254-0150.2009.02.001

    HAN Rongdi, ZHANG Yue, WANG Yang. Study on capillary model of tool-chip interface friction and lubricating[J]. Lubrication Engineering,2009,34(2):1-4(in Chinese). doi: 10.3969/j.issn.0254-0150.2009.02.001
    [3]
    PARK K H, EWALD B, KWON P Y. Effect of nano-enhanced lubricant in minimum quantity lubrication balling milling[J]. Journal of Tribology,2011,133(3):3526-3537.
    [4]
    LI B K, LI C H, ZHANG Y B, et al. Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil[J]. Journal of Cleaner Production,2017,154:1-11. doi: 10.1016/j.jclepro.2017.03.213
    [5]
    王治宇, 赵宗彬, 邱介山. 碳纳米管填充技术研究[J]. 化学进展, 2006, 18(5):563-572. doi: 10.3321/j.issn:1005-281X.2006.05.007

    WANG Zhiyu, ZHAO Zongbin, QIU Jieshan. Development of filling carbon nanotubes[J]. Progress in Chemistry,2006,18(5):563-572(in Chinese). doi: 10.3321/j.issn:1005-281X.2006.05.007
    [6]
    魏智强, 李维学, 冯旺军. 纳米镍颗粒填充碳纳米管的制备与磁性能[J]. 复合材料学报, 2012, 29(6):124-128.

    WEI Zhiqiang, LI Weixue, FENG Wangjun. Preparation and magnetic property of Ni nanoparticles filled carbon nanotubes[J]. Acta Materiae Compositae Sinica,2012,29(6):124-128(in Chinese).
    [7]
    宣益民, 李强. 纳米流体强化传热研究[J]. 工程热物理学报, 2000, 21(4):466-470. doi: 10.3321/j.issn:0253-231X.2000.04.018

    XUAN Yimin, LI Qiang. Heat transfer enhancement of nanofluids[J]. Journal of Engineering Thermophysics,2000,21(4):466-470(in Chinese). doi: 10.3321/j.issn:0253-231X.2000.04.018
    [8]
    ALAA Mohamed. Tribological behavior of carbon nanotubes as an additive oil lithium grease[J]. Journal of Tribology,2015,137(1):l-5.
    [9]
    TANG B L, CHEN G X, CHEN Q F. Research and Manufacture of nano-silver conductive ink[J]. Advanced Materials Research,2011,174:405-408.
    [10]
    LI Y, WU H A, WANG F C. Effect of a single nanoparticle on the contact line motion[J]. Langmuir,2016,32(48):12676-12685. doi: 10.1021/acs.langmuir.6b03595
    [11]
    HUANG S Q, LV T, WANG M, et al. Enhanced machining performance and lubrication mechanism of electrostatic minimum quantity lubrication-EMQL milling process[J]. International Journal of Advanced Manufacturing Technology,2018,94(1-4):655-666. doi: 10.1007/s00170-017-0935-4
    [12]
    杨林初, 汤正成, 苏宇. 静电雾化切削的雾化形态研究[J]. 江苏科技大学学报, 2018, 32(5):684-689.

    YANG Linchu, TANG Zhengcheng, SU Yu. Investigation on atomization form of electrostatic atomization cutting[J]. Journal of Jiangsu University of Science and Technology,2018,32(5):684-689(in Chinese).
    [13]
    GHERMAN C, TUDOR M C, CONSTANTIN B, et al. Pharmacokinetics evaluation of carbon nanotubes using FTIR analysis and histological analysis[J]. Journal of Nanoscience and Nanotechnology,2015,15(4):2865-2869. doi: 10.1166/jnn.2015.9845
    [14]
    晋卫军, 孙旭峰, 王煜. 碳纳米管溶解性及其化学修饰[J]. 新型炭材料, 2004, 19(4):312-317. doi: 10.3321/j.issn:1007-8827.2004.04.013

    JIN Weijun, SUN Xufeng, WANG Yu. Solubilization and functionalization of carbon nanotubes[J]. New Carbon Materials,2004,19(4):312-317(in Chinese). doi: 10.3321/j.issn:1007-8827.2004.04.013
    [15]
    SINHA-RAY S, SAHU R P, YARIN A L. Nano-encapsulated smart tunable phase change materials[J]. Soft Matter, 2011, 7(19): 8823-8827.
    [16]
    BERBER S, KWON Y K, TOMANEK D. Unusually high thermalconductivity of carbon nanotubes[J]. Physical Review Letters,2000,84(20):4613-4616. doi: 10.1103/PhysRevLett.84.4613
    [17]
    安宁丽, 李嘉宾, 叶静静, 等. Fe3O4-碳纳米管/聚偏氟乙烯复合材料的制备与性能[J]. 复合材料学报, 2018, 35(12):3247-3252.

    AN Ningli, LI Jiabin, YE Jingjing, et al. Preparation and properties of Fe3O4-carbon nanotubes/polyvinylidene fluoride composite[J]. Acta Materiae Compositae Sinica,2018,35(12):3247-3252(in Chinese).
    [18]
    GLORY J, BONETTI M, HELEZEN M, et al. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes[J]. Journal of Applied Physics, 2008, 103(9): 094309-1-7.
    [19]
    GRUJICIC M, CAO G, ROY W N. A computational analysis of the percolation threshold and the electrical conductivity of carbon nanotubes filled polymeric materials[J]. Journal of Materials Science, 2004, 39: 4441-4449.
    [20]
    EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivityof individual carbon nanotubes[J]. Nature,1996,382(6586):54-56. doi: 10.1038/382054a0
    [21]
    DUJARDIN E, EBBESEN T W, HIURA H, et al. Capillarity andwetting of carbon nanotubes [J]. Science, 1994, 265 (5180): 1850-1852.
    [22]
    沈钟, 赵振国, 康万利. 胶体与表面化学[M]. 北京: 化学工业出版社, 2012: 109-111.

    SHEN Zhong, ZHAO Zhenguo, KANG Wanli. Colloid and surface chemistry[M]. Beijing: China Chemical Industry Press, 2012: 109-111(in Chinese).
    [23]
    刘洪国, 孙德军, 郝京诚. 新编胶体与界面化学[M]. 北京: 化学工业出版社, 2016: 110-112.

    LIU Hongguo, SUN Dejun, HAO Jingcheng. New colloid and interface chemistry[M]. Beijing: China Chemical Industry Press, 2016: 110-112(in Chinese).
    [24]
    LU G, DUAN Y Y, WANG X D. Surface tension, viscosity, and rheology of water-based nanofluids: A microscopic interpretation on the molecular level[J]. Journal of Nanoparticle Research,2014,16:2564. doi: 10.1007/s11051-014-2564-2
    [25]
    TANVIR S, QIAO L. Surface tension of nanofluid-type fuels containing suspended nanomaterials[J]. Nanoscale Research Letters,2012,7(1):226. doi: 10.1186/1556-276X-7-226
    [26]
    KARTHIKEYAN A, COULOMBE S, KIETZIG A M. Wetting behavior of multi-walled carbon nanotube nanofluids[J]. Nanotechnology,2017,28(10):105706. doi: 10.1088/1361-6528/aa5a5f
    [27]
    WALKER S W, SHAPIRO B. Modeling the fluid dynamics of electrowetting on dielectric(EWOD)[J]. Journal of Microelectromechanical Systems,2006,15(4):986-1000. doi: 10.1109/JMEMS.2006.878876
    [28]
    赵亚溥. 表面与界面物理力学[M]. 北京: 科学出版社. 2012: 228-232.

    ZHAO Yapu. Physical and mechanics of surface and interface[M]. Beijing: China Science Press, 2012: 228-232(in Chinese).
    [29]
    KUMARR, MILANOVA D. Effect of surface tension on nanotubenanofluids[J]. Applied Physics Letters,2009,94(4):227. doi: 10.1063/1.3085766
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (962) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return