Volume 37 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
CAO Jinying, CAO He, OUYANG Qiubao, et al. Effect of multi-pass friction stir processing on microstructure and mechanical properties of SiCP/2A14 aluminum alloy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2861-2869. doi: 10.13801/j.cnki.fhclxb.20200306.002
Citation: CAO Jinying, CAO He, OUYANG Qiubao, et al. Effect of multi-pass friction stir processing on microstructure and mechanical properties of SiCP/2A14 aluminum alloy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2861-2869. doi: 10.13801/j.cnki.fhclxb.20200306.002

Effect of multi-pass friction stir processing on microstructure and mechanical properties of SiCP/2A14 aluminum alloy composites

doi: 10.13801/j.cnki.fhclxb.20200306.002
  • Received Date: 2019-12-04
  • Accepted Date: 2020-02-28
  • Available Online: 2020-03-06
  • Publish Date: 2020-11-15
  • The SiC particle reinforced 2A14 aluminum alloy (SiCP/2A14) composite was treated by friction stir processing (FSP) technology. The metallurgical characterization, electron backscatter diffraction (EBSD), SEM, hardness test and mechanical tensile test were used to analyze the influence of the multi-pass FSP on the microstructure, mechanical properties and superplastic deformation behavior of the SiCP/2A14 composite. The results show that the distribution of SiC particles in the SiCP/2A14 composite stirring zone is obviously uniform and the grain is refined after FSP. The grain size of the SiCP/2A14 composite with 2-pass of FSP is the smallest, which is 3.14 μm. With the increase of processing passes, the hardness of the SiCP/2A14 composite decreases, and the tensile strength at room temperature and the elongation at high temperature both increase first and then decrease. Among them, the SiCP/2A14 composite with 2-pass FSP reaches the peak, and the tensile strength at room temperature is 319 MPa, which is 41% higher than the SiCP/2A14 composite without FSP, and the elongation is 609% at 500℃ and the strain rate is 1×10−3 s−1, which is 133% higher than the SiCP/2A14 composite without FSP.

     

  • loading
  • [1]
    SALIH O S, OU H, SUN W, et al. A review of friction stir welding of aluminium matrix composites[J]. Materials & Design,2015,86:61-71.
    [2]
    HASSAN A M, ALMOMANI M, QASIM T, et al. Effect of processing parameters on friction stir welded aluminum matrix composites wear behavior[J]. Materials and Manufacturing Processes,2012,27(12):1419-1423. doi: 10.1080/10426914.2012.700156
    [3]
    李惠, 焦雷, 梅运柱, 等. 挤压对ZrB2/6063Al复合材料组织及其摩擦磨损特性的影响[J]. 稀有金属材料与工程, 2017, 46(10):3017-3022.

    LI H, JIAO L, MEI Y Z, et al. Effects of extrusion on microstructure and friction wear resistance in situ ZrB2/6063Al aluminum matrix composites[J]. Rare Metal Materials and Engineering,2017,46(10):3017-3022(in Chinese).
    [4]
    肖伯律, 黄治冶, 马凯, 等. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1):59-72.

    XIAO B L, HUANG Z Y, MA K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites[J]. Acta Metallurgica Sinica,2019,55(1):59-72(in Chinese).
    [5]
    GHANDVAR H, FARAHANY S, IDRIS J. Wettability enhancement of SiCP in cast A356/SiCP composite using semisolid process[J]. Materials and Manufacturing Processes,2015,30(12):1442-1449. doi: 10.1080/10426914.2015.1004687
    [6]
    HASHIM J, LOONEY L, HASHMI M S J. Metal matrix composites: Production by the stir casting method[J]. Journal of Materials Processing Technology,1999,92-93(99):1-7.
    [7]
    韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与进展[J]. 复合材料学报, 2017, 34(8):1625-1635.

    HAN Y F, SUN X L, QIU P K, et al. Research and development of processing technology on particulate reinforced titanium matrix composites[J]. Acta Materiae Compositae Sinica,2017,34(8):1625-1635(in Chinese).
    [8]
    郭炜, 王渠东. 大塑性变形制备超细晶复合材料的研究进展[J]. 锻压技术, 2010, 35(1):4-9. doi: 10.3969/j.issn.1000-3940.2010.01.002

    GUO W, WANG Q D. Research progress of fabricating ultrafine-grained composites by severe plastic deformation[J]. Forging & Stamping Technology,2010,35(1):4-9(in Chinese). doi: 10.3969/j.issn.1000-3940.2010.01.002
    [9]
    MISHRA R S, MA Z Y, CHARIT I. Friction stir processing: A novel technique for fabrication of surface composite[J]. Materials Science & Engineering A,2003,341(1-2):307-310.
    [10]
    MISHRA R S, MAHONEY M W. Friction stir processing: A new grain refinement technique to achieve high strain rate superplasticity in commercial alloys[J]. Materials Science Forum,2001,357-359:507-514.
    [11]
    DU Z, TAN M J, GUO J F, et al. Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP)[J]. Materials Science & Engineering A,2016,667:125-131. doi: 10.1016/j.msea.2016.04.094
    [12]
    ZHANG W, DING H, CAI M, et al. Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti-6Al-4V alloy[J]. Materials Science & Engineering A,2018,727:90-96.
    [13]
    SAIKRISHNA N, PRADEEP K R G, MUNIRATHINAM B, et al. Influence of bimodal grain size distribution on the corrosion behavior of friction stir processed biodegradable AZ31 magnesium alloy[J]. Journal of Magnesium and Alloys,2016,4(1):68-76. doi: 10.1016/j.jma.2015.12.004
    [14]
    陈菲菲, 黄宏军, 薛鹏, 等. 搅拌摩擦加工超细晶材料的组织和力学性能研究进展[J]. 材料研究学报, 2018, 32(1):1-11. doi: 10.11901/1005.3093.2017.146

    CHEN F F, HUANG H J, XUE P, et al. Research progress on microstructure and mechanical properties of friction stir processed ultrafine-grained materials[J]. Chinese Journal of Materials Research,2018,32(1):1-11(in Chinese). doi: 10.11901/1005.3093.2017.146
    [15]
    JU X F, ZHANG F G, CHEN Z, et al. Microstructure of multi-pass friction-stir-processed Al-Zn-Mg-Cu alloys reinforced by nano-sized TiB2 particles and the effect of T6 heat treatment[J]. Metals,2017,7(12):530. doi: 10.3390/met7120530
    [16]
    ZHAO Y T, KAI X Z, CHEN G, et al. Effects of friction stir processing on the microstructure and superplasticity of in situ nano-ZrB2/2024Al composite[J]. Progress in Natural Science: Materials International,2016,26(1):69-77.
    [17]
    PRATER T. Friction stir welding of metal matrix composites for use in aerospace structures[J]. Acta Astronautica,2014,93:366-373. doi: 10.1016/j.actaastro.2013.07.023
    [18]
    OUYANG Q B, LI R X, WANG W L, et al. Light weight and high modulus aluminum matrix composite and its application into aerospace[J]. Materials Science Forum,2007,546-549:1551-1554.
    [19]
    ARORA H S, SINGH H, DHINDAW B K. Composite fabrication using friction stir processing—a review[J]. The International Journal of Advanced Manufacturing Technology,2012,61(9-12):1043-1055. doi: 10.1007/s00170-011-3758-8
    [20]
    张璐, 张大童, 曹耿华. 搅拌摩擦加工制备羟基磷灰石增强镁复合材料的微观组织和力学性能[J]. 复合材料学报, 2019, 36(10):2341-2347.

    ZHANG L, ZHANG D T, CAO G H. Microstructure and mechanical properties of hydroxyapatite reinforced magnesium composites prepared by friction stirring processing[J]. Acta Materiae Compositae Sinica,2019,36(10):2341-2347(in Chinese).
    [21]
    XUE P, WANG B B, CHEN F F, et al. Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure[J]. Materials Characterization,2016,121:187-194. doi: 10.1016/j.matchar.2016.10.009
    [22]
    MOUSTAFA E. Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites[J]. Materials,2017,10(9):1053. doi: 10.3390/ma10091053
    [23]
    HUANG H Y, FAN G L, TAN Z Q, et al. Superplastic behavior of carbon nanotube reinforced aluminum composites fabricated by flake powder metallurgy[J]. Materials Science & Engineering A,2017,699:55-61.
    [24]
    焦雷, 赵玉涛, 王晓路, 等. 铝基复合材料高应变速率及低温超塑性的研究进展[J]. 材料导报, 2013, 27(3):119-123, 132. doi: 10.3969/j.issn.1005-023X.2013.03.025

    JIAO L, ZHAO Y T, WANG X L, et al. The development of high strain rate and low temperature superplasticity in aluminum matrix composites[J]. Materials Review,2013,27(3):119-123, 132(in Chinese). doi: 10.3969/j.issn.1005-023X.2013.03.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (1463) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return