Volume 37 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
ZHANG Zhaoyan, MA Shuai, LU Xin, et al. In-situ solution polymerization and properties of chitosan-graphene oxide/thermoplastic polyurethane composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2726-2734. doi: 10.13801/j.cnki.fhclxb.20200302.002
Citation: ZHANG Zhaoyan, MA Shuai, LU Xin, et al. In-situ solution polymerization and properties of chitosan-graphene oxide/thermoplastic polyurethane composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2726-2734. doi: 10.13801/j.cnki.fhclxb.20200302.002

In-situ solution polymerization and properties of chitosan-graphene oxide/thermoplastic polyurethane composites

doi: 10.13801/j.cnki.fhclxb.20200302.002
  • Received Date: 2019-12-10
  • Accepted Date: 2020-02-18
  • Available Online: 2020-03-03
  • Publish Date: 2020-11-15
  • An improved in-situ solution polymerization method was used in order to prepare the thermoplastic polyurethane (TPU) composite with high mechanical properties, barrier properties and thermal conductivity. Graphene oxide modified by chitosan (CS-GO) was grafted onto TPU prepolymer, then CS-GO/TPU composite was synthesized by chain extension reaction. The microstructure of CS-GO was characterized by FTIR, XRD and FESEM. The properties of CS-GO/TPU composites were tested by universal testing machine, oxygen transmission instrument and thermal conductivity meter. The results show that there is a hydrogen bond between CS and GO, and the dispersibility of CS-GO in the TPU matrix is better than GO. The enhancement of barrier property of CS-GO/TPU composites is due to the uniform dispersion of CS-GO which can effectively block the penetration of oxygen. The interaction between CS-GO and TPU matrix has positive effect on the transmission of stress load and the formation of a thermally conductive network. Compared with the pristine TPU, when mass fraction of the CS-GO is 1wt%, the tensile strength and elongation at break of CS-GO/TPU composites are increased by 106.8% and 111.2%, respectively; the thermal conductivity is 1.55 times higher than the pristine TPU.

     

  • loading
  • [1]
    曹宁宁, 郑玉婴, 刘阳龙, 等. 层叠状功能化石墨烯纳米带/TPU复合材料薄膜的制备与性能[J]. 复合材料学报, 2016, 33(7):1371-1381.

    CAO N N, ZHENG Y Y, LIU Y L, et al. Fabrication and properties of stack-like functionalized graphene nanoribbons/TPU composite films[J]. Acta Materiae Compositae Sinica,2016,33(7):1371-1381(in Chinese).
    [2]
    DADBAKHSH S, VERBELEN L, VANDEPUTTE T, et al. Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer[J]. Physics Procedia,2016,83:971-980. doi: 10.1016/j.phpro.2016.08.102
    [3]
    XIAO J H, GAO Y F. The manufacture of 3D printing of medical grade TPU[J]. Progress in Additive Manufacturing,2017,2(3):117-123. doi: 10.1007/s40964-017-0023-1
    [4]
    余芳, 张才前, 马艳萍. TPU-羊毛机织物复合防水透湿织物的开发[J]. 毛纺科技, 2017, 45(9):34-37.

    YU F, ZHANG C Q, MA Y P. Development of TPU-wool woven laminate waterproof and moisture permeable fabrics[J]. Wool Textile Journal,2017,45(9):34-37(in Chinese).
    [5]
    欧忠星, 郑玉婴, 肖东升, 等. 功能化改性还原氧化石墨烯-碳纳米管/热塑性聚氨酯复合材料膜的制备及性能[J]. 复合材料学报, 2016, 33(3):486-494.

    OU Z X, ZHENG Y Y, XIAO D S, et al. Prepararion and properties of functional modification reduced graphene oxide-carbon nanotubes/thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica,2016,33(3):486-494(in Chinese).
    [6]
    DERVIN S, DIONYSIOU D D, PILLAI S C. 2D nanostructures for water purification: Graphene and beyond[J]. Nanoscale,2016,8(33):15115-15131. doi: 10.1039/C6NR04508A
    [7]
    KANG D H, SEO K S, LEE H Y, et al. Experimental study on mechanical strength of GO-cement composites[J]. Construction and Building Materials,2017,131:303-308. doi: 10.1016/j.conbuildmat.2016.11.083
    [8]
    ZHAO L, SUN H, KIM N, et al. Hydrogen gas barrier property of polyelectrolyte/GO layer-by-layer films[J]. Journal of Applied Polymer Science,2015,132(20):41973.
    [9]
    高玲玲, 王振宇, 饶伟丽, 等. 骨胶原蛋白-壳聚糖共混膜中分子间作用红外光谱分析[J]. 农业工程学报, 2018, 34(3):285-291.

    GAO L L, WANG Z Y, RAO W L, et al. Molecular interaction analysis between collagen and chitosan blend film based on infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(3):285-291(in Chinese).
    [10]
    YU B W, XU J, LIU J H, et al. Adsorption behavior of copper ions on graphene oxide-chitosan aerogel[J]. Journal of Environmental Chemical Engineering,2013,1(4):1044-1050. doi: 10.1016/j.jece.2013.08.017
    [11]
    张中勋, 刘霞, 刘杨, 等. 氧化石墨烯修饰壳聚糖药物载体的构建[J]. 高分子材料科学与工程, 2019, 35(8):137-143.

    ZHANG Z X, LIU X, LIU Y, et al. Construction of graphene oxide modified chitosan drug carrier[J]. Polymer Materials Science & Engineering,2019,35(8):137-143(in Chinese).
    [12]
    PAN Y Z, WU T F, BAO H Q, et al. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide[J]. Carbohydrate Polymers,2011,83(4):1908-1915. doi: 10.1016/j.carbpol.2010.10.054
    [13]
    白静静, 尹建宇, 高雄. 异氰酸酯功能化氧化石墨烯/热塑性聚氨酯弹性体复合材料的制备与性能[J]. 复合材料学报, 2018, 35(7):1683-1690.

    BAI J J, YIN J Y, GAO X. Preparation and characterization of isocyanate functionalized graphene oxide/thermoplastic polyurethane elastomer composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1683-1690(in Chinese).
    [14]
    CHEN D Q, CHEN G H. In situ synthesis of thermoplastic polyurethane/graphene nanoplatelets conductive composite by ball milling[J]. Journal of Reinforced Plastics and Composites,2013,32(5):300-307. doi: 10.1177/0731684412471230
    [15]
    YEH T F, SYU J M, CHENG C, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Advanced Functional Materials,2010,20(14):2255-2262. doi: 10.1002/adfm.201000274
    [16]
    中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic: Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [17]
    中国国家标准化管理委员会. 塑料薄膜和薄片气体透过性试验方法: 压差法: GB/T 1038—2000[S]. 北京: 中国标准出版社, 2000.

    Standardization Administration of the People’s Republic of China. Determination of gas transmission for plastics film and sheeting: Differential-pressure method: GB/T 1038—2000[S]. Beijing: China Standards Press, 2000(in Chinese).
    [18]
    SAMUELS R J. Solid state characterization of the structure of chitosan films[J]. Journal of Polymer Science Part A: Polymer Chemistry,2010,19(7):1081-1105.
    [19]
    樊志敏, 郑玉婴, 刘先斌, 等. 功能氧化石墨烯/热塑性聚氨酯复合材料薄膜的制备及阻隔性能[J]. 复合材料学报, 2015, 32(3):705-711.

    FAN Z M, ZHENG Y Y, LIU X B, et al. Preparation and barrier properties of functional graphene oxide/thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica,2015,32(3):705-711(in Chinese).
    [20]
    符博支, 高洋洋, 冯予星, 等. 聚合物纳米石墨烯复合材料导热性能研究进展[J]. 功能材料, 2019, 50(8):8065-8075.

    FU B Z, GAO Y Y, FENG Y X, et al. Progress in thermal conductivity of polymer nano-graphene nanocomposites[J]. Journal of Functional Materials,2019,50(8):8065-8075(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (2275) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return