Volume 37 Issue 11
Nov.  2020
Turn off MathJax
Article Contents
ZHANG Qingfa, REN Xiajin, WU Juanjuan, et al. Mechanical properties of activated carbon/high density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2816-2824. doi: 10.13801/j.cnki.fhclxb.20200224.001
Citation: ZHANG Qingfa, REN Xiajin, WU Juanjuan, et al. Mechanical properties of activated carbon/high density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2816-2824. doi: 10.13801/j.cnki.fhclxb.20200224.001

Mechanical properties of activated carbon/high density polyethylene composites

doi: 10.13801/j.cnki.fhclxb.20200224.001
  • Received Date: 2019-12-04
  • Accepted Date: 2019-12-31
  • Available Online: 2020-02-25
  • Publish Date: 2020-11-15
  • Three kinds of activated carbon were prepared from rice husk with H3PO4, KOH, ZnCl2 as activating agents at 600℃. The biochar and three kinds of activated carbon were used to reinforce high density polyethylene (HDPE) to prepare biochar/HDPE composites and activated carbon/HDPE composites. The mechanical properties of the composites were tested and analyzed. The results show that higher specific surface area and more developed pore structure are obtained in activated carbon than in biochar, and better mechanical properties are obtained in activated carbon/HDPE composites than biochar/HDPE composites. Besides, the highest specific surface area of 714.27m2/g is obtained in activated carbon which is activated by H3PO4 (activated carbon(H3PO4)), and better comprehensive mechanical properties are obtained for activated carbon(H3PO4)/HDPE composite due to its excellent flexural properties, tensile properties, rigidity, elasticity, creep resistance and anti-stress relaxation ability. The flexural strength, flexural modulus, tensile strength and tensile modulus of the activated carbon(H3PO4)/HDPE composite are 38.66 MPa, 2.46 GPa, 32.17 MPa and 1.95 GPa, respectively. This study can provide useful experience for utilization of activated carbon in composites.

     

  • loading
  • [1]
    LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems: A review[J]. Mitigation and Adaptation Strategies for Global Change,2006,11(2):403-427. doi: 10.1007/s11027-005-9006-5
    [2]
    PAZ-FERREIRO J, NIETO A, MÉNDEZ A, et al. Biochar from biosolids pyrolysis: A review[J]. International Journal of Environmental Research and Public Health,2018,15(5):956-972. doi: 10.3390/ijerph15050956
    [3]
    陈温福, 张伟明, 孟军, 等. 生物炭应用技术研究[J]. 中国工程科学, 2011, 13(2):83-89. doi: 10.3969/j.issn.1009-1742.2011.02.015

    CHEN W F, ZHANG W M, MENG J, et al. Researches on biochar application technology[J]. Engineering Science,2011,13(2):83-89(in Chinese). doi: 10.3969/j.issn.1009-1742.2011.02.015
    [4]
    DAS O, SARMAH A K, BHATTACHARYYA D. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites[J]. Waste Management,2015,38:132-140. doi: 10.1016/j.wasman.2015.01.015
    [5]
    HO M P, LAU K T, WANG H, et al. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles[J]. Composites Part B: Engineering,2015,81:14-25. doi: 10.1016/j.compositesb.2015.05.048
    [6]
    张庆法, 杨科研, 蔡红珍, 等. 稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J]. 复合材料学报, 2018, 35(11):3044-3050.

    ZHANG Q F, YANG K Y, CAI H Z, et al. Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2018,35(11):3044-3050(in Chinese).
    [7]
    LI S, LI X, DENG Q, et al. Three kinds of charcoal powder reinforced ultra-high molecular weight polyethylene composites with excellent mechanical and electrical properties[J]. Materials and Design,2015,85:54-59. doi: 10.1016/j.matdes.2015.06.163
    [8]
    QIAN S, ZHANG H, YAO W, et al. Effects of bamboo cellulose nanowhisker content on the morphology, crystallization, mechanical, and thermal properties of PLA matrix biocomposites[J]. Composites Part B: Engineering,2018,133:203-209. doi: 10.1016/j.compositesb.2017.09.040
    [9]
    RICHHARD S, RAJADURAI J S, MANIKANDAN V. Effects of particle loading and particle size on tribological properties of biochar particulate reinforced polymer composites[J]. Journal of Tribology,2017,139(1):012202. doi: 10.1115/1.4033131
    [10]
    DAS O, BHATTACHARRYA D, HUI D, et al. Mechanical and flammability characterisations of biochar/polypropylene biocomposites[J]. Composites Part B: Engineering,2016,106:120-128. doi: 10.1016/j.compositesb.2016.09.020
    [11]
    ANDRZEJEWSKI J, MISRA M, MOHANTY A K. Polycarbonate biocomposites reinforced with a hybrid filler system of recycled carbon fiber and biocarbon: Preparation and thermomechanical characterization[J]. Journal of Applied Polymer Science,2018,135(28):46449. doi: 10.1002/app.46449
    [12]
    NAN N, DEVALLANCE D B, XIE X, et al. The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites[J]. Journal of Composite Materials,2016,50(9):1161-1168. doi: 10.1177/0021998315589770
    [13]
    GIORCELLI M, KHAN A, PUGNO N M, et al. Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties[J]. Biomass and Bioenergy,2019,120:219-223. doi: 10.1016/j.biombioe.2018.11.036
    [14]
    CODOU A, MISRA M, MOHANTY A K. Sustainable biocarbon reinforced nylon 6/polypropylene compatibilized blends: Effect of particle size and morphology on performance of the biocomposites[J]. Composites Part A: Applied Science and Manufacturing,2018,112:1-10. doi: 10.1016/j.compositesa.2018.05.018
    [15]
    SHE D, DONG J, ZHANG J, et al. Development of black and biodegradable biochar/guttapercha composite films with high stretchability and barrier properties[J]. Composites Science and Technology,2019,175:1-5. doi: 10.1016/j.compscitech.2019.03.007
    [16]
    王海莹, 余晓, 李穗奕, 等. 热塑性塑料/生物炭复合材料研究进展[J]. 工程塑料应用, 2018, 46(12):139-142. doi: 10.3969/j.issn.1001-3539.2018.12.027

    WANG H Y, YU X, LI S Y, et al. Research progress of thermoplastic/biomass charcoal composites[J]. Engeering Plastics Application,2018,46(12):139-142(in Chinese). doi: 10.3969/j.issn.1001-3539.2018.12.027
    [17]
    DAS O, SARMAH A K, BHATTACHRYYA D. A sustainable and resilient approach through biochar addition in wood polymer composites[J]. Science of the Total Environment,2015,512-513:326-336.
    [18]
    BEHAZIN E, MISRA M, MOHANTY A K. Sustainable biocarbon from pyrolyzed perennial grasses and their effects on impact modified polypropylene biocomposites[J]. Composites Part B: Engineering,2017,118:116-124. doi: 10.1016/j.compositesb.2017.03.003
    [19]
    LI S, HUANG A, CHEN Y J, et al. Highly filled biochar/ultra-high molecular weight polyethylene/linear low density polyethylene composites for high-performance electromagnetic interference shielding[J]. Composites Part B: Engineering,2018,153:277-284. doi: 10.1016/j.compositesb.2018.07.049
    [20]
    POULOSE A M, ELNOUR A Y, ANIS A, et al. Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics[J]. Science of the Total Environment,2017,619-620:311-318.
    [21]
    YANG Q, WANG X, LUO W, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge[J]. Bioresource Technology,2018,247:537-544. doi: 10.1016/j.biortech.2017.09.136
    [22]
    SPESSATO L, BEDIN K C, CAZETTA A L, et al. KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles[J]. Journal of Hazardous Materials,2019,371:499-505. doi: 10.1016/j.jhazmat.2019.02.102
    [23]
    XING X, JIANG W, LI S, et al. Preparation and analysis of straw activated carbon synergetic catalyzed by ZnCl2-H3PO4 through hydrothermal carbonization combined with ultrasonic assisted immersion pyrolysis[J]. Waste Management,2019,89:64-72. doi: 10.1016/j.wasman.2019.04.002
    [24]
    HUANG Y, MA E, ZHAO G. Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers[J]. Industrial Crops and Products,2015,69:447-455. doi: 10.1016/j.indcrop.2015.03.002
    [25]
    张庆法, 蔡红珍, 周亮, 等. 含炭量对木炭/聚丙烯复合材料性能的影响[J]. 农业工程学报, 2018, 34(23):254-259. doi: 10.11975/j.issn.1002-6819.2018.23.033

    ZHANG Q F, CAI H Z, ZHOU L, et al. Effect of charcoal content on properties of charcoal/polypropylene composites[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(23):254-259(in Chinese). doi: 10.11975/j.issn.1002-6819.2018.23.033
    [26]
    DAS O, HEDENQVIST M S, JOHANSSON E, et al. An all-gluten biocomposite: Comparisons with carbon black and pine char composites[J]. Composites Part A: Applied Science and Manufacturing,2019,120:42-48. doi: 10.1016/j.compositesa.2019.02.015
    [27]
    赵玲, 严兴, 尹平河, 等. 甘蔗渣制取活性炭的强度和稳定性研究[J]. 农业环境科学学报, 2009, 28(6):1298-1301. doi: 10.3321/j.issn:1672-2043.2009.06.036

    ZHAO L, YAN X, YIN P H, et al. Strength and stability study on activated charcoal abstracted from bagasse[J]. Journal of Agro-Environment Science,2009,28(6):1298-1301(in Chinese). doi: 10.3321/j.issn:1672-2043.2009.06.036
    [28]
    ZHANG Q, CAI H, REN X, et al. The dynamic mechanical analysis of highly filled rice husk biochar/high-density polyethylene composites[J]. Polymers,2017,9(11):628-638. doi: 10.3390/polym9110628
    [29]
    HUNG K C, WU T L, CHEN Y L, et al. Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites[J]. Construction and Building Materials,2016,108:139-145. doi: 10.1016/j.conbuildmat.2016.01.039
    [30]
    DAVIS A M, HANZLY L E, DEBUTTS B L, et al. Characterization of dimensional stability in flax fiber reinforced polypropylene composites[J]. Polymer Composites,2019,40(1):132-140. doi: 10.1002/pc.24614
    [31]
    OBAID N, KORTSCHOT M T, SAIN M. Predicting the stress relaxation behavior of glass-fiber reinforced polypropylene composites[J]. Composites Science and Technology,2018,161:85-91. doi: 10.1016/j.compscitech.2018.04.004
    [32]
    GEZAHEGN S, LAI R, HUANG L, et al. Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites[J]. Science of The Total Environment,2019,664:363-373. doi: 10.1016/j.scitotenv.2019.01.408
    [33]
    YANG X, KANG K, QIU L, et al. Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches[J]. Renewable Energy,2020,146:1691-1699. doi: 10.1016/j.renene.2019.07.148
    [34]
    LI S, LI X, CHEN C, et al. Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network[J]. Composites Science and Technology,2016,132:31-37. doi: 10.1016/j.compscitech.2016.06.010
    [35]
    姚文超, 钱少平, 盛奎川, 等. 超微竹炭增强聚丙烯复合材料的制备与性能[J]. 复合材料学报, 2017, 34(12):2661-2667.

    YAO W C, QIAN S P, SHENG K C, et al. Fabrication and properties of polypylene matrix composites reinforced by ultrafine bamboo-char[J]. Acta Materiae Compositae Sinica,2017,34(12):2661-2667(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1842) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return