Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
XUE Weipei, LIU Xiaoyuan, YAO Zhishu, et al. Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2285-2293. doi: 10.13801/j.cnki.fhclxb.20200219.001
Citation: XUE Weipei, LIU Xiaoyuan, YAO Zhishu, et al. Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2285-2293. doi: 10.13801/j.cnki.fhclxb.20200219.001

Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete

doi: 10.13801/j.cnki.fhclxb.20200219.001
  • Received Date: 2019-10-23
  • Accepted Date: 2020-01-03
  • Available Online: 2020-02-19
  • Publish Date: 2020-09-15
  • In order to study the pore structure change characteristics of basalt fiber reinforced concrete under two sources of damage, high temperature and mechanics, nuclear magnetic resonance(NMR) and scanning electron microscopy(SEM) techniques were used to observe the T2 spectrum distribution, pore size distribution and flaw development of the basalt fiber reinforced concrete. The results show that normal concrete, short basalt fiber reinforced concrete and long basalt fiber reinforced concrete show a trend of decreasing the number of micropores and increasing the number of mesopores after high temperature. By comparison, it is found that long basalt fiber reinforced concrete has the largest number of pores in the main peak of the T2 spectrum and the largest pore size distribution. The long basalt fiber reinforced concrete was taken as an example to illustrate the change characteristics of pore structure under two kinds of damage sources. The number of pores under high temperature damage with a relaxation time of 0.1–10 ms is greater than the number of pores under mechanical damage. And the main peak of T2 spectrum shiftes to the right as the temperature increases. However, the main peak of T2 spectrum hardly changes with the increase of load, indicating that the increase in temperature can aggravate the damage more than mechanical. And the new pore diameter increases continuously under each temperature. The main peak of T2 spectrum and pore size distribution increase with temperature increasing, and decrease at first and then increase with increasing load, which indicates that the high temperature directly causes damages to the concrete, while the mechanical makes the concrete dense at first and then damage. The same conclusion is obtained by electron microscope observation.

     

  • loading
  • [1]
    张向冈, 秦文博, 田琦, 等. 玄武岩纤维混凝土材料性能研究进展[J]. 混凝土, 2018(2):94-97. doi: 10.3969/j.issn.1002-3550.2018.02.026

    ZHANG Xianggang, QIN Wenbo, TIAN Qi, et al. Research progress of the material properties on basalt fiber reinforced concrete[J]. Concrete,2018(2):94-97(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.02.026
    [2]
    AYUB T, SHAFIQ N, NURUDDIN M F. Mechanical properties of high-performance concrete reinforced with basalt fibers[J]. Procedia Engineering,2014,77:131-139. doi: 10.1016/j.proeng.2014.07.029
    [3]
    赵庆新, 董进秋, 潘慧敏, 等. 玄武岩纤维增韧混凝土冲击性能[J]. 复合材料学报, 2010, 27(6):120-125.

    ZHAO Qingxin, DONG Jinqiu, PAN Huimin, et al. Impact behavior of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2010,27(6):120-125(in Chinese).
    [4]
    LUDOVICO D M, PROTA A, MANFREDA G. Structural upgrade using basalt fibers for concrete confinement[J]. Composites of Construction,2010,5(14):541-552.
    [5]
    RAMBO D A S, SILVA F D A, FILHO R D T, et al. Effect of elevated temperatures on the mechanical behavior of basalt textile reinforced refractory concrete[J]. Materials <italic>&</italic> Design,2015,65:24-33.
    [6]
    REN W B, XU J Y, SU H Y. Dynamic compressive behavior of basalt fiber reinforced concrete after exposure to elevated temperatures[J]. Fire and Materials,2016,40(5):738-755. doi: 10.1002/fam.2339
    [7]
    陈炜, 何耀, 林可心, 等. 高温后玄武岩纤维高强混凝土的力学特性[J]. 硅酸盐通报, 2014, 33(5):1246-1250.

    CHEN Wei, HE Yao, LIN Kexin, et al. Mechanical properties of basalt fiber reinforced high strength concrete after high temperature[J]. Bulletin of the Chinese Ceramic Society,2014,33(5):1246-1250(in Chinese).
    [8]
    刘俊良, 许金余, 董宗戈, 等. 玄武岩纤维混凝土高温损伤的声学特性研究[J]. 混凝土, 2016(2):56-59. doi: 10.3969/j.issn.1002-3550.2016.02.014

    LIU Junliang, XU Jinyu, DONG Zongge, et al. Study on the ultrasonic properties of basalt fiber reinforced concrete after elevated temperature[J]. Concrete,2016(2):56-59(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.02.014
    [9]
    许金余, 刘健, 李志武, 等. 高温中与高温后混凝土的冲击力学特性[J]. 建筑材料学报, 2013, 16(1):1-5. doi: 10.3969/j.issn.1007-9629.2013.01.001

    XU Jinyu, LIU Jian, LI Zhiwu, et al. Impact mechanical properties of concrete at and after exposure to high temperature[J]. Journal of Building Materials,2013,16(1):1-5(in Chinese). doi: 10.3969/j.issn.1007-9629.2013.01.001
    [10]
    张白, 陈俊, 杨鸥, 等. 高温后混凝土质量损失及抗压强度退化规律试验[J]. 建筑结构, 2019, 49(4):76-81.

    ZHANG Bai, CHEN Jun, YANG Ou, et al. Experimental study on mass loss and compressive strength degradation law of concrete after high temperature exposure[J]. Building Structure,2019,49(4):76-81(in Chinese).
    [11]
    吴波, 袁杰, 王光远. 高温后高强混凝土力学性能的试验研究[J]. 土木工程学报, 2000, 33(2):8-12, 34. doi: 10.3321/j.issn:1000-131X.2000.02.002

    WU Bo, YUAN Jie, WANG Guangyuan. Experimental research on the mechanical properties of HSC after high temperature[J]. China Civil Engineering Journal,2000,33(2):8-12, 34(in Chinese). doi: 10.3321/j.issn:1000-131X.2000.02.002
    [12]
    石东升, 王安. 矿渣细骨料混凝土孔隙结构对抗压强度的影响[J]. 混凝土, 2016(3):80-83. doi: 10.3969/j.issn.1002-3550.2016.11.021

    SHI Dongsheng, WANG An. Effect of fine aggregate concrete pore structure on compressive strength[J]. Concrete,2016(3):80-83(in Chinese). doi: 10.3969/j.issn.1002-3550.2016.11.021
    [13]
    黄大观, 牛荻涛, 傅强, 等. 玄武岩-聚丙烯混杂纤维混凝土孔结构分析[J]. 混凝土, 2018(7):51-53. doi: 10.3969/j.issn.1002-3550.2018.07.013

    HUANG Daguan, NIU Ditao, FU Qiang, et al. Pore structure analysis of concrete with hybrid basalt-polypropylene fiber[J]. Concrete,2018(7):51-53(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.07.013
    [14]
    刘子璐, 陈新明, 韩振宇, 等. 孔隙结构对玄武岩纤维混凝土力学性能的影响研究[J]. 混凝土与水泥制品, 2019(1):47-50.

    LIU Zilu, CHEN Xinming, HAN Zhenyu, et al. The influence study of pore structures on mechanical properties of basalt fiber concrete[J]. China Concrete and Cement Products,2019(1):47-50(in Chinese).
    [15]
    刘倩, 申向东, 董瑞鑫, 等. 孔隙结构对风积沙混凝土抗压强度影响规律的灰熵分析[J]. 农业工程学报, 2019, 35(10):108-114. doi: 10.11975/j.issn.1002-6819.2019.10.014

    LIU Qian, SHEN Xiangdong, DONG Ruixin, et al. Grey entropy analysis on effect of pore structure on compressive strength of aeolian sand concrete[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(10):108-114(in Chinese). doi: 10.11975/j.issn.1002-6819.2019.10.014
    [16]
    焦华喆, 韩振宇, 陈新明, 等. 玄武岩纤维对喷射混凝土力学性能及微观结构影响机制[J]. 复合材料学报, 2019, 36(8):1926-1934.

    JIAO Huazhe, HAN Zhenyu, CHEN Xinming, et al. Influence mechanism of basalt fiber on the toughness and microstructure of spray shotcrete[J]. Acta Materiae Compositae Sinica,2019,36(8):1926-1934(in Chinese).
    [17]
    刘倩, 申向东, 薛慧君, 等. 基于核磁共振技术对不同粗骨料混凝土孔隙特征试验研究[J]. 功能材料, 2017, 48(10):10066-10070.

    LIU Qian, SHEN Xiangdong, XUE Huijun, et al. Experimental study on pore characteristics of different coarse aggregate concrete based on NMR technique[J]. Journal of Functional Materials,2017,48(10):10066-10070(in Chinese).
    [18]
    中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266—2013[S]. 北京: 中国计划出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of engineering rock mass: GB/T 50266—2013[S]. Beijing: China Planning Press, 2013(in Chinese).
    [19]
    周科平, 李杰林, 许玉娟, 等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报, 2012, 31(4):731-737. doi: 10.3969/j.issn.1000-6915.2012.04.011

    ZHOU Keping, LI Jielin, XU Yujuan, et al. Experimental study on NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(4):731-737(in Chinese). doi: 10.3969/j.issn.1000-6915.2012.04.011
    [20]
    王萧萧. 寒冷地区盐渍溶液环境下天然浮石混凝土耐久性研究[D]. 呼和浩特: 内蒙古农业大学, 2015.

    WANG Xiaoxiao. Research on the durability of natural pumice concrete in saline solution environment of cold regions[D]. Hohhot: Inner Mongolia Agricultural University, 2015(in Chinese).
    [21]
    张二锋, 杨更社, 刘慧. 冻融循环作用下砂岩细观损伤演化规律试验研究[J]. 煤炭工程, 2018, 50(10):50-55.

    ZHANG Erfeng, YANG Gengshe, LIU Hui. Experimental study on meso-damage evolution of sandstone under freeze-thaw cycles[J]. Coal Engineering,2018,50(10):50-55(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article Metrics

    Article views (888) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return