Volume 37 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
GUO Xiuhua, LIN Huanran, SONG Kexing, et al. Arc erosion behavior of multi-particle TiB2/Cu composite[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2526-2533. doi: 10.13801/j.cnki.fhclxb.20200217.001
Citation: GUO Xiuhua, LIN Huanran, SONG Kexing, et al. Arc erosion behavior of multi-particle TiB2/Cu composite[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2526-2533. doi: 10.13801/j.cnki.fhclxb.20200217.001

Arc erosion behavior of multi-particle TiB2/Cu composite

doi: 10.13801/j.cnki.fhclxb.20200217.001
  • Received Date: 2019-11-06
  • Accepted Date: 2020-01-09
  • Available Online: 2020-02-18
  • Publish Date: 2020-10-15
  • TiB2/Cu composites with multi-particle (2 μm+10 μm+50 μm) were prepared by powder metallurgy. The arc erosion resistance of multi-particle TiB2/Cu composites was tested in a JF04C contact material testing system. The arc erosion resistance and morphology of TiB2/Cu composites were studied when the mass ratios of TiB2 particles (2 μm+10 μm+50 μm) were 1∶1∶1, 1∶1∶3, 1∶3∶1 and 3∶1∶1, respectively. The results show that when the (2 μm+10 μm+50 μm) TiB2 particle mass ratio is 1∶1∶1, the TiB2/Cu composite has the highest relative density and conductivity of 99.1% and 87.1%IACS, respectively. When the (2 m+10 m+50 m) TiB2 particle mass ratio are 1∶1∶1 and 1∶3∶1, the structure uniformity of the TiB2/Cu composites is better, the material loss is the same after arc erosion, and the material loss of the TiB2/Cu composite is lower than the composites with other ratios. When the ratio is 1∶3∶1, the TiB2/Cu composite has the lowest average arc energy, and the arc duration and arc energy are the most stable. It can be concluded that the introduction of appropriate multi-particle TiB2 particles into Cu matrix can improve the density and electrical conductivity of the TiB2/Cu composites. In the process of arc erosion, TiB2 particles with different sizes cooperate with each other, which is helpful to enhance the arc erosion resistance and service stability of the TiB2/Cu composites.

     

  • loading
  • [1]
    GUO Xiuhua, ZHOU Yanjun, SONG Kexing, et al. Microstructure and properties of Cu-Mg alloy treated by internal oxidation[J]. Materials Science and Technology,2018,34(6):648-653. doi: 10.1080/02670836.2017.1410354
    [2]
    BAGHERI G A. The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles[J]. Journal of Alloys and Compounds,2016,676:120-126. doi: 10.1016/j.jallcom.2016.03.085
    [3]
    陆东梅, 杨瑞霞, 王清周. 掺杂纳米SnO2-Al2O3/Cu新型电触头复合材料的制备及耐磨性能[J]. 复合材料学报, 2016, 33(12):2815-2823.

    LU Dongmei, YANG Ruixia, WANG Qingzhou. Fabrication and wear resistances of doped nano-SnO2-Al2O3/Cu novel electrical contact composites[J]. Acta Materiea Compo-site Sinica,2016,33(12):2815-2823(in Chinese).
    [4]
    ZHANG Xiaohui, ZHANG Yi, TIAN Baohong, et al. Arc erosion behavior of the Al2O3-Cu/(W, Cr) electrical contacts[J]. Composites Part A: Applied Science & Manufacturing,2019,160(3):110-118.
    [5]
    ZHU S, LIU Yong, TIAN B, et al. Arc erosion behavior and mechanism of Cu/Cr20 electrical contact material[J]. Vacuum,2017,143:129-137. doi: 10.1016/j.vacuum.2017.06.002
    [6]
    GUO Xiuhua, SONG Kexing, LIANG Shuhua, et al. Relationship between the MgOp/Cu interfacial bonding state and the arc erosion resistance of MgO/Cu composites[J]. Journal of Materials Research,2017,32(19):3753-3760. doi: 10.1557/jmr.2017.321
    [7]
    JIANG Y H, LI D, LIANG S H, et al. Phase selection of titanium boride in copper matrix composites during solidification[J]. Journal of Materials Science,2017,52(5):2957-2963. doi: 10.1007/s10853-016-0592-2
    [8]
    ZOU C L, KANG H J, WANG W, et al. Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu-TiB2 composites[J]. Journal of Alloys and Compounds,2016,687:312-319. doi: 10.1016/j.jallcom.2016.06.129
    [9]
    YU Z L, ZHU H G, HUANG J W, et al. Processing and characterization of in-situ ultrafine TiB2-Cu composites from Ti-B-Cu system[J]. Powder Technology,2017,320:66-72. doi: 10.1016/j.powtec.2017.07.036
    [10]
    KUMAR M, GUPTA G K, MODI O P, et al. Effect of separate and combined milling of Cu and TiB2 powders on the electrical and mechanical properties of Cu-TiB2 composites[J]. Canadian Metallurgical Quarterly,2016,56(1):58-66.
    [11]
    GUO X, SONG K, LING S, et al. Effect of Al2O3 particle size on electrical wear performance of Al2O3/Cu compo-sites[J]. Tribology Transactions,2016,59(1):170-177. doi: 10.1080/10402004.2015.1061079
    [12]
    ĎURIŠINOVÁ K, ĎURIŠIN J, OROLÍNOVÁ M, et al. Effect of mechanical milling on nanocrystalline grain stability and properties of Cu-Al2O3 composite prepared by thermo-chemical technique and hot extrusion[J]. Journal of Alloys and Compounds,2015,618:204-209. doi: 10.1016/j.jallcom.2014.08.177
    [13]
    庄伟彬, 宗亚平, 张跃波. 铁基复合材料碳化硅粒子混合尺寸增强作用机理[J]. 材料科学与工程学报, 2013(1):1-5.

    ZHUANG Weibin, ZONG Yaping, ZHANG Yuebo. Mechanism of SiC particle mixing size enhancement in iron matrix composites[J]. Journal of Materials Science and Engineering,2013(1):1-5(in Chinese).
    [14]
    贺鹏. HPT法制备多粒径SiCp/Al基复合材料及组织性能研究[D]. 合肥: 合肥工业大学, 2015.

    HE Peng. Preparation and microstructure and properties of SiCp/Al matrix composites with multi-particle SiCp/Al by HPT[D]. Hefei: Hefei University of Technology, 2015(in Chinese).
    [15]
    BINDUMADHAVAN P N , WAH H K , PRABHAKAR O. Dual particle size (DPS) composites: Effect on wear and mechanical properties of particulate metal matrix composites[J]. Wear,2001,248(1-2):112-120. doi: 10.1016/S0043-1648(00)00546-9
    [16]
    ZOU C, CHEN Z, GUO E, et al. A nano-micro dual-scale particulate-reinforced copper matrix composite with high strength, high electrical conductivity and superior wear resistance[J]. RSC Advances,2018,8(54):30777-30782. doi: 10.1039/C8RA06020G
    [17]
    MIN Z, GAOHUI W, ZUOYONG D, et al. TiB2P/Al compo-site fabricated by squeeze casting technology[J]. Materials Science and Engineering: A,2004,374(1-2):303-306. doi: 10.1016/j.msea.2004.03.003
    [18]
    WU N, XUE F, YANG H, et al. Effects of TiB2 particle size on the microstructure and mechanical properties of TiB2-based composites[J]. Ceramics International,2019,45(1):1370-1378. doi: 10.1016/j.ceramint.2018.08.270
    [19]
    张胜利, 国秀花, 宋克兴, 等. 多粒径TiB2颗粒增强铜基复合材料制备与载流摩擦磨损的特性[J]. 复合材料学报, 2019, 36(10):93-101.

    ZHANG Shengli, GUO Xiuhua, SONG Kexing, et al. Preparation and electrical wear characteristics of copper matrix composites reinforced with mixing sized TiB2 particles[J]. Acta Materiae Compositae Sinica,2019,36(10):93-101(in Chinese).
    [20]
    MALEQUE A, KARIM R. Tribological behavior of dual and triple particle size SiC reinforced Al-MMCs: A comparative study[J]. Industrial Lubrication and Tribology,2008,60(4):189-194. doi: 10.1108/00368790810881533
    [21]
    DINAHARAN I, SARAVANAKUMAR S, KALAISELVAN K, et al. Microstructure and sliding wear characterization of Cu/TiB2 copper matrix composites fabricated via friction stir processing[J]. Journal of Asian Ceramic Societies,2018,5(3):295-303.
    [22]
    XI Y, WANG X H, ZHOU Z J, et al. Material transfer behavior of AgTiB2 contact under different contact forces and electrode gaps[J]. Transactions of Nonferrous Metals Society of China,2019,29(5):1046-1056. doi: 10.1016/S1003-6326(19)65013-2
    [23]
    李国辉, 刘勇, 国秀花, 等. TiB2/Cu复合材料的电弧侵蚀行为[J]. 复合材料学报, 2018, 35(3):616-622.

    LI Guohui, LIU Yong, GUO Xiuhua, et al. Arc erosion behavior of TiB2/Cu composites[J]. Acta Meteriae Composite Sinica,2018,35(3):616-622(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (543) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return