Volume 37 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
DUAN Yingtao, WU Xiaopeng, WANG Zhiwen, et al. Interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2418-2427. doi: 10.13801/j.cnki.fhclxb.20200215.002
Citation: DUAN Yingtao, WU Xiaopeng, WANG Zhiwen, et al. Interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2418-2427. doi: 10.13801/j.cnki.fhclxb.20200215.002

Interlaminar mechanical properties of carbon fiber reinforced plastics-thermoformed steel super-hybrid laminates

doi: 10.13801/j.cnki.fhclxb.20200215.002
  • Received Date: 2019-10-30
  • Accepted Date: 2020-01-20
  • Available Online: 2020-02-17
  • Publish Date: 2020-10-15
  • The synergistic effects of the metal surface treatments and interleaves on the interlaminar mechanical properties of the carbon fiber reinforced plastics (CFRP) composite-thermoformed steel super-hybrid laminates were investigated. Double cantilever beam tests (DCB) show that the Mode-I interlaminar fracture toughness of the laminates can be greatly improved by combining metal surface treatment and inserting interleaf. Among them, the interlaminar Mode-I fracture toughness of the specimens with sandblasting/adhesive film interleaves (GB36#/AF) and sandblasting/epoxy resin interleaves (GB36#/EP) increase by 343% and 129% compared with that of the degreased specimens respectively. In addition, based on the cohesive zone model, the delamination of the CFRP-thermoformed steel super-hybrid laminates was analyzed by finite element method. Finally, to uncover the toughing mechanism, confocal laser scanning microscopy (LSM), contact angle goniometer (CAG) and scanning electron microscopy (SEM) were employed to characterize the surface morphology of the thermoformed steel and the fracture surface of the tested laminates.

     

  • loading
  • [1]
    SINMAZÇELIK T, AVCU E, BORA M Ö, et al. A review: Fiber metal laminates, background, bonding types and applied test methods[J]. Materials & Design,2011,32(7):3671-3685.
    [2]
    胡小雨, 蒋秋冉, 魏毅, 等. 碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征[J]. 复合材料学报, 2018, 35(7):1691-1699.

    HU X Y, JIANG Q R, WEI Y, et al. Preparation and characterization of carbon fiber-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1691-1699(in Chinese).
    [3]
    董大龙, 周翔, 汪海, 等. 分层对复合材料机械连接结构承载能力的影响[J]. 复合材料学报, 2018, 35(1):61-69.

    DONG D L, ZHOU X, WANG H, et al. Bearing capacity of composite mechanical joint with hole delamination[J]. Acta Materiae Compositae Sinica,2018,35(1):61-69(in Chinese).
    [4]
    吴素君, 解晓伟, 晋会锦, 等. 纤维金属层板力学性能的研究现状[J]. 复合材料学报, 2018, 35(4):733-747.

    WU S J, XIE X W, JIN H J, et al. Mechanical properties of fiber metal laminates: A review[J]. Acta Materiae Compo-site Sinica,2018,35(4):733-747(in Chinese).
    [5]
    SUN Z, JEYARAMAN J, SUN S, et al. Carbon-fiber aluminum-foam sandwich with short aramid-fiber interfacial toughening[J]. Composites Part A: Applied Science and Manufacturing,2012,43(11):2059-2064. doi: 10.1016/j.compositesa.2012.06.002
    [6]
    SUN Z, HU X, SUN S, et al. Energy-absorption enhancement in carbon-fiber aluminum-foam sandwich structures from short aramid-fiber interfacial reinforcement[J]. Composites Science and Technology,2013,77:14-21. doi: 10.1016/j.compscitech.2013.01.016
    [7]
    WANG L, LIU W, WAN L, et al. Mechanical performance of foam-filled lattice composite panels in four-point bending: Experimental investigation and analytical modeling[J]. Composites Part B: Engineering,2014,67:270-279. doi: 10.1016/j.compositesb.2014.07.003
    [8]
    邓江东, 宗周红, 黄培彦. FRP-混凝土界面疲劳性能分析[J]. 复合材料学报, 2010, 27(1):155-161.

    DENG J D, ZONG Z H, HUANG P Y. Analysis of FRP-concrete interfacial fatigue properties[J]. Acta Materiae Compositae Sinica,2010,27(1):155-161(in Chinese).
    [9]
    韩奇钢, 孙延标, 杨文珂, 等. 纤维/金属层状复合材料的研究及应用进展[J]. 精密成形工程, 2019, 11(1):17-24. doi: 10.3969/j.issn.1674-6457.2019.01.003

    HAN Q G, SUN Y B, YANG W K, et al. The development in research and application of fiber metal laminated compo-sites[J]. Journal of Netshape Forming Engineering,2019,11(1):17-24(in Chinese). doi: 10.3969/j.issn.1674-6457.2019.01.003
    [10]
    SHI S, SUN Z, REN M, et al. Buckling response of advanced grid stiffened carbon-fiber composite cylindrical shells with reinforced cutouts[J]. Composites Part B: Engineering,2013,44(1):26-33. doi: 10.1016/j.compositesb.2012.07.044
    [11]
    RIZKALLA S, DAWOOD M, SCHNERCH D. Development of a carbon fiber reinforced polymer system for strengthening steel structures[J]. Composites Part A: Applied Science and Manufacturing,2008,39(2):388-397. doi: 10.1016/j.compositesa.2007.10.009
    [12]
    LEE B E, PARK E T, KIM J, et al. Analytical evaluation on uniaxial tensile deformation behavior of fiber metal laminate based on SRPP and its experimental confirmation[J]. Composites Part B: Engineering,2014,67:154-159. doi: 10.1016/j.compositesb.2014.06.031
    [13]
    GUO S J, YANG Q S, HE X Q, et al. Modeling of interface cracking in copper-graphite composites by MD and CFE method[J]. Composites Part B: Engineering,2014,58:586-592. doi: 10.1016/j.compositesb.2013.10.042
    [14]
    FIORE V, ALAGNA F, DI BELLA G, et al. On the mechanical behavior of BFRP to aluminum AA6086 mixed joints[J]. Composites Part B: Engineering,2013,48:79-87. doi: 10.1016/j.compositesb.2012.12.009
    [15]
    SHI S, SUN Z, REN M, et al. Buckling resistance of grid-stiffened carbon-fiber thin-shell structures[J]. Compo-sites Part B: Engineering,2013,45(1):888-896. doi: 10.1016/j.compositesb.2012.09.052
    [16]
    WANG L, LIU W, HUI D. Compression strength of hollow sandwich columns with GFRP skins and a paulownia wood core[J]. Composites Part B: Engineering,2014,60:495-506. doi: 10.1016/j.compositesb.2014.01.013
    [17]
    邓本波, 鲁后国, 唐程光. 汽车热压成型板研究与应用[J]. 汽车技术, 2012(12):62-64. doi: 10.3969/j.issn.1000-3703.2012.12.014

    DENG B B, LU H G, TANG C G. Research and application on hot-press forming panel for vehicle[J]. Automobile Technology,2012(12):62-64(in Chinese). doi: 10.3969/j.issn.1000-3703.2012.12.014
    [18]
    王明建, 夏申琳, 潘恒沛. 汽车轻量化技术现状及展望[J]. 汽车工艺师, 2016(7):56-59. doi: 10.3969/j.issn.1672-657X.2016.07.022

    WANG J M, XIA S L, PAN H P. The status and prospects of automobile lightweight technology[J]. Automobile Technology,2016(7):56-59(in Chinese). doi: 10.3969/j.issn.1672-657X.2016.07.022
    [19]
    BOUTAR Y, NAÏMI S, MEZLINI S, et al. Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications[J]. International Journal of Adhesion and Adhesives,2016,67:38-43. doi: 10.1016/j.ijadhadh.2015.12.023
    [20]
    ALFANO M, LUBINEAU G, FURGIUELE F, et al. Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints[J]. International Journal of Adhesion and Adhesives,2012,39:33-41. doi: 10.1016/j.ijadhadh.2012.03.002
    [21]
    PANTOJA M, ABENOJAR J, MARTÍNEZ M A, et al. Silane pretreatment of electrogalvanized steels: Effect on adhesive properties[J]. International Journal of Adhesion and Adhesives,2016,65:54-62. doi: 10.1016/j.ijadhadh.2015.11.006
    [22]
    徐飞, 潘蕾, 白云瑞, 等. 钛表面阳极氧化处理对TA2/聚醚醚酮(PEEK)粘结性能的影响[J]. 航空学报, 2014, 35(6):1724-1732.

    XU F, PAN L, BAI Y R, et al. Effects of Titanium surface anodization on adhesive bonding properties of TA2/polyetheretherketone(PEEK)[J]. Acta Aeronautica et Astronautica Sinica,2014,35(6):1724-1732(in Chinese).
    [23]
    高志强, 仲伟虹, 杨鸿昌, 等. Ti表面处理及其对层间混杂复合材料Ti/CFRP性能影响[J]. 复合材料学报, 2001(3):26-29. doi: 10.3321/j.issn:1000-3851.2001.03.007

    GAO Z Q, ZHONG W H, YANG H C, et al. Surface activation methods of Ti and the effects on Ti/CFRP hybrid compo-site[J]. Acta Materiae Compositae Sinica,2001(3):26-29(in Chinese). doi: 10.3321/j.issn:1000-3851.2001.03.007
    [24]
    WANG X, LIN J, MIN J, et al. Effect of atmospheric pressure plasma treatment on strength of adhesive-bonded aluminum AA5052[J]. The Journal of Adhesion,2018,94(9):701-722. doi: 10.1080/00218464.2017.1393747
    [25]
    NING H, LI Y, LI J, et al. Toughening effect of CB-epoxy interleaf on the inter-laminar mechanical properties of CFRP laminates[J]. Composites Part A: Applied Science and Manufacturing,2015,68:226-234. doi: 10.1016/j.compositesa.2014.09.030
    [26]
    NING H, LI J, HU N, et al. Inter-laminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf[J]. Carbon,2015,91:224-233. doi: 10.1016/j.carbon.2015.04.054
    [27]
    HOJO M, ANDO T, TANAKA M, et al. Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf[J]. International Journal of Fatigue,2006,28(10):1154-1165. doi: 10.1016/j.ijfatigue.2006.02.004
    [28]
    MOURITZ A P, BANNISTER M K, FALZON P J, et al. Review of applications for advanced three-dimensional fiber textile composites[J]. Composites Part A: Applied Science and Manufacturing,1999,30(12):1445-1461. doi: 10.1016/S1359-835X(99)00034-2
    [29]
    BYRD L W, BIRMAN V. Effectiveness of z-pins in preventing delamination of co-cured composite joints on the example of a double cantilever test[J]. Composites Part B: Engineering,2006,37(4-5):365-378. doi: 10.1016/j.compositesb.2005.05.019
    [30]
    Japanese Standards Association. Testing methods for interlaminar fracture toughness of carbon fibre reinforced plastics: JIS K 7086: 1993[S]. Japan: Japanese Standards Association, 1993.
    [31]
    HUA X, LI H, LU Y, et al. Interlaminar fracture toughness of GLARE laminates based on asymmetric double cantilever beam (ADCB)[J]. Composites Part B: Engineering,2019,163:175-184. doi: 10.1016/j.compositesb.2018.11.040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (1203) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return