Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
GU Sheng, WANG Xue, XU Guoqi. Construction of nanocellulose-carboxylated carbon nanotube-graphite/polypyrrole flexible electrode composite based on interface interaction[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002
Citation: GU Sheng, WANG Xue, XU Guoqi. Construction of nanocellulose-carboxylated carbon nanotube-graphite/polypyrrole flexible electrode composite based on interface interaction[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2105-2116. doi: 10.13801/j.cnki.fhclxb.20200210.002

Construction of nanocellulose-carboxylated carbon nanotube-graphite/polypyrrole flexible electrode composite based on interface interaction

doi: 10.13801/j.cnki.fhclxb.20200210.002
  • Received Date: 2019-10-30
  • Accepted Date: 2019-12-29
  • Available Online: 2020-02-11
  • Publish Date: 2020-09-15
  • Using nanocellulose(CNF), carboxylated carbon nanotubes(CNTs—COOH), pencil graphite(PGr) and polypyrrole(PPy) as raw materials, the CNF-CNTs—COOH-PGr/PPy flexible electrode composite with graphite layer structure was prepared by vacuum filtration, coating, oxidative polymerization and based on the principle of hydrogen bonding interface interaction. The results show that the CNF-CNTs—COOH-PGr/PPy flexible electrode composite does not break when it is flatted, folded and stretched, and exhibits strong mechanical properties, and its tensile strength reaches 28.90 MPa. The porous structure of hydrophilic CNF and CNTs—COOH enhances the diffusion path of ions and electrons. The addition of PGr effectively improves the conductive path of CNF-CNTs—COOH-PGr/PPy flexible electrode composite and gives it excellent conductive properties. The conductivity of CNF-CNTs—COOH-PGr/PPy flexible electrode composite obtained after the oxidative polymerization reaches 5.403 S·cm−1. In the 1 mol·L−1 H2SO4 solution, the CNF-CNTs—COOH-PGr/PPy flexible electrode composite has a high specific capacitance of 521 F·g−1 at the current density of 0.5 A·g−1. And its capacitance retention rate is as high as 68% after 1 500 charge and discharge cycles. Based on the excellent mechanical properties, the electrochemical properties and electrical conductivity of the flexible electrodes, the CNF-CNTs—COOH-PGr/PPy flexible electrode composite has the basis characteristics for becoming the electrode material for flexible energy storage devices.

     

  • loading
  • [1]
    ZOU J D, ZHANG M, HUANG J R, et al. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor[J]. Advanced Energy Materials,2018,8(10):1702671-1702679. doi: 10.1002/aenm.201702671
    [2]
    ZHI L, ZHANG W L, DANG L Q, et al. Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance[J]. Journal of Power Sources,2018,387:108-116. doi: 10.1016/j.jpowsour.2018.03.063
    [3]
    YANG P H, MAI W J. Flexible solid-state electrochemical supercapacitors[J]. Nano Energy,2014,8:274-290. doi: 10.1016/j.nanoen.2014.05.022
    [4]
    HUANG Y, LI H F, WANG Z F, et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor[J]. Nano Energy,2016,22:422-438. doi: 10.1016/j.nanoen.2016.02.047
    [5]
    YUE Y, LIU N S, MA Y N, et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel[J]. ACS Nano,2018,12(5):4224-4232. doi: 10.1021/acsnano.7b07528
    [6]
    TAO J Y, LIU N S, RAO J Y, et al. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage[J]. Nanoscale,2014,6(24):15073-15079. doi: 10.1039/C4NR04819A
    [7]
    YU Z, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions[J]. Energy Environmental Science,2015,8(3):702-730. doi: 10.1039/C4EE03229B
    [8]
    DI J T, ZHANG X H, YONG Z Z, et al. Carbon-nanotube fibers for wearable devices and smart textiles[J]. Advanced Materials,2016,28(47):10529-10538. doi: 10.1002/adma.201601186
    [9]
    ZHOU H H, HAN G Y, XIAO Y M, et al. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors[J]. Journal of Power Sources,2014,263:259-267. doi: 10.1016/j.jpowsour.2014.04.039
    [10]
    XU Y X, LIN Z Y, HUANG X Q, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS Nano,2013,7(5):4042-4049. doi: 10.1021/nn4000836
    [11]
    LV W, LI Z G, ZHOU G M, et al. Tailoring microstructure of graphene-based membrane by controlled removal of trapped water inspired by the phase diagram[J]. Advanced Functional Materials,2014,24(22):3456-3463. doi: 10.1002/adfm.201304054
    [12]
    任丽, 韩阳. 聚吡咯/磷酸铁锂复合正极材料的制备与表征[J]. 复合材料学报, 2012, 29(5):41-46.

    REN Li, HAN Yang. Preparation and characterization of PPy/LiFePO<sub>4</sub> composite material as cathode[J]. Acta Materiae Compositae Sinica,2012,29(5):41-46(in Chinese).
    [13]
    付长璟, 李爽, 宋春来, 等. 聚吡咯/氧化石墨复合材料的制备及其电容性能[J]. 复合材料学报, 2016, 33(3):572-579.

    FU Changjing, LI Shuang, SONG Chunlai, et al. Preparation of polypyrrole/graphite oxide composite and its capacitive properties[J]. Acta Materiae Compositae Sinica,2016,33(3):572-579(in Chinese).
    [14]
    ZHENG X Y, LV W, TAO Y, et al. Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance[J]. Chemistry of Materials,2014,26(23):6896-6903. doi: 10.1021/cm503845q
    [15]
    HOU Y, ZHANG L, CHEN L Y, et al. Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold[J]. Physical Chemistry Chemical Physics,2014,16(8):3523-3528. doi: 10.1039/c3cp54497d
    [16]
    LI Q, MAHMOOD N, ZHU J H, et al. Graphene and its composites with nanoparticles for electrochemical energy applications[J]. Nanotoday,2014,9(5):668-683. doi: 10.1016/j.nantod.2014.09.002
    [17]
    LU Z, CHAO Y F, GE Y, et al. High-performance hybrid carbon nanotube fibers for wearable energy storage[J]. Nanoscale,2017,9(16):5063-5071. doi: 10.1039/C7NR00408G
    [18]
    SUN J F, HUANG Y, FU C X, et al. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn[J]. Nano Energy,2016,27:230-237. doi: 10.1016/j.nanoen.2016.07.008
    [19]
    LEE H, KIM H, CHO M S, et al. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications[J]. Electrochimica Acta,2011,56(22):7460-7466. doi: 10.1016/j.electacta.2011.06.113
    [20]
    ALCARAZ-ESPINOZA J J, OLIVEIRA H P. Flexible supercapacitors based on a ternary composite of polyaniline/polypyrrole/graphite on gold coated sandpaper[J]. Electrochimica Acta,2018,274:200-207. doi: 10.1016/j.electacta.2018.04.063
    [21]
    SONG Y, LIU T Y, YAO B, et al. Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability[J]. Small,2017,13(16):1700067. doi: 10.1002/smll.201700067
    [22]
    ZHOU X, CHEN Q, WANG A, et al. Bamboo-like composites of V<sub>2</sub>O<sub>5</sub>/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors[J]. ACS Applied Materials Interfaces,2016,8(6):3776-3783. doi: 10.1021/acsami.5b10196
    [23]
    LI P, JIN Z, PENG L, et al. Stretchable all-gel-state fiber-shaped super- capacitors enabled by macromolecularly interconnected 3D graphene /nanostructured conductive polymer hydrogels[J]. Advanced Materials,2018,30(18):180012-180018.
    [24]
    WU C, ZHOU T Z, DU Y, et al. Strong bioinspired HPA-rGO nanocomposite films via interfacial interactions for flexible supercapacitors[J]. Nano Energy,2019,58:517-527. doi: 10.1016/j.nanoen.2019.01.055
    [25]
    HOU M J, XU M J, HU Y M, et al. Nanocellulose incorporated grapheme/polypyrrole film with a sandwich-like architecture for preparing flexible supercapacitor electrodes[J]. Electrochimica Acta,2019,313:245-254. doi: 10.1016/j.electacta.2019.05.037
    [26]
    刘馨月, 齐晓俊, 管宇鹏, 等. 纤维素纳米纤丝-还原氧化石墨烯/聚苯胺气凝胶柔性电极复合材料的制备与性能[J]. 复合材料学报, 2019, 36(7):1583-1590.

    LIU Xinyue, QI Xiaojun, GUAN Yupeng, et al. Preparation and properties of cellulose nanofiber-reduced graphene oxide/polyaniline composite aerogels as flexible electrodes[J]. Acta Materiae Compositae Sinica,2019,36(7):1583-1590(in Chinese).
    [27]
    IWAMOTO S, KAI W H, ISOGAI T, et al. Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils[J]. Polymer Degradation and Stability,2010,95(8):1394-1398. doi: 10.1016/j.polymdegradstab.2010.01.017
    [28]
    BENHAMOU K, DUFRESNE A, MAGNIN A, et al. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time[J]. Carbohydrate Polymers,2014,99:74-83. doi: 10.1016/j.carbpol.2013.08.032
    [29]
    GAMELAS J A F, PEDROSA J, LOURENCO A F, et al. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment[J]. Micron,2015,72:28-33. doi: 10.1016/j.micron.2015.02.003
    [30]
    ZHU X L, WU G L, LU N, et al. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants[J]. Journal of Hazardous Materials,2017,324:272-280. doi: 10.1016/j.jhazmat.2016.10.057
    [31]
    CHINNAPPAN A, LEE J K Y, JAYATHILAKA W A D M,et al. Fabrication of MWCNT/Cu nanofibers via electro-spinning method and analysis of their electrical conductivity by four-probe method[J]. International Journal of Hydrogen Energy,2018,43(2):721-729. doi: 10.1016/j.ijhydene.2017.11.028
    [32]
    LIU P, WANG X, LI H D. Preparation of carboxylated carbon nanotubes/polypyrrole composite hollow microspheres via chemical oxidative interfacial polymerization and their electrochemical performance[J]. Synthetic Metals,2013,181:72-78. doi: 10.1016/j.synthmet.2013.08.010
    [33]
    李莉香, 刘永长, 耿新, 等. 氮掺杂碳纳米管的制备及其电化学性能[J]. 物理化学学报, 2011, 27(2):443-448. doi: 10.3866/PKU.WHXB20110225

    LI Lixiang, LIU Yongchang, GENG Xin, et al. Synhesin and electrochemical performance of nitrogen-doped carbon nanatubes[J]. Acta Physico-Chimica Sinica,2011,27(2):443-448(in Chinese). doi: 10.3866/PKU.WHXB20110225
    [34]
    LI Q Q, RENNECKAR S. Supramolecular structure characterization of molecularly thin cellulose I nanoparticles[J]. Biomacromolecules,2011,12(3):650-659. doi: 10.1021/bm101315y
    [35]
    LI X G, LI A, HUANG M R, et al. Efficient and scalable synthesis of pure polypyrrole nanoparticles applicable for advanced nano composites and carbon nanoparticles[J]. The Journal of Physical Chemistry C,2010,114(45):19244-19255. doi: 10.1021/jp107435b
    [36]
    QU L T, SHI G Q, CHEN F E, et al. Electrochemical growth of polypyrrole microcontainers[J]. Macromolecules,2003,36(4):1063-1067. doi: 10.1021/ma021177b
    [37]
    HU C C, CHANG K H, LIN M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO<sub>2</sub> for next generation supercapacitors[J]. Nano Letters,2006,6(12):2690-2695. doi: 10.1021/nl061576a
    [38]
    吴中, 张新波. 高容量超级电容器电极材料的设计与制备[J]. 物理化学学报, 2017, 33(2):305-313.

    WU Zhong, ZHANG Xinbo. Design and preparation of electrode materials for supercapacitors with high specific capacitance[J]. Acta Physico-Chimica Sinica,2017,33(2):305-313(in Chinese).
    [39]
    CHEN J J, HUANG Y, LI C, et al. Synthesis of NiO@MnO<sub>2</sub> core/shell nanocomposites for supercapacitor application[J]. Applied Surface Science,2016,360:534-539. doi: 10.1016/j.apsusc.2015.10.187
    [40]
    UMESHBABU E, RAJESHKHANNA G, RAO G R. Urchin and sheaf-like NiCo<sub>2</sub>O<sub>4</sub> nanostructures: Synthesis and electrochemical energy storage application[J]. International Journal of Hydrogen Energy,2014,39(28):15627-15638. doi: 10.1016/j.ijhydene.2014.07.168
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article views (1368) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return