Volume 37 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
ZHOU Wenying, ZHANG Caihua, LI Xu, et al. Tailoring the dielectric properties of silicone particles/poly(vinylidene fluoride) composites based on interface structures[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001
Citation: ZHOU Wenying, ZHANG Caihua, LI Xu, et al. Tailoring the dielectric properties of silicone particles/poly(vinylidene fluoride) composites based on interface structures[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2137-2143. doi: 10.13801/j.cnki.fhclxb.20200210.001

Tailoring the dielectric properties of silicone particles/poly(vinylidene fluoride) composites based on interface structures

doi: 10.13801/j.cnki.fhclxb.20200210.001
  • Received Date: 2019-10-30
  • Accepted Date: 2020-01-06
  • Available Online: 2020-02-10
  • Publish Date: 2020-09-15
  • To reduce the dielectric loss(tanδ) and increase the dielectric breakdown strength(Eb) of silicon particles/poly(vinylidene fluoride)(Si/PVDF) composites, two kinds of core-shell structured Si particles, i.e., Si@SiO2 and Si@SiO2@PS were prepared by high temperature oxidation and polystyrene(PS) coating. The FTIR, XRD and TEM measurements were used to characterize the formed shell structure. The measurements results verify the existence of SiO2 and SiO2@PS shells on the surface of Si. The results show that the Si@SiO2 interlayer significantly suppresses the tanδ and reduces the leakage conductivity of the Si@SiO2/PVDF composites compared with Si/PVDF composites, and the double-shell Si@SiO2@PS/PVDF composites exhibit the lowest tanδ and the highest Eb among the three composites because the organic PS interlayer enhances the interfacial compatibility and promotes the fillers’ homogeneous dispersion in PVDF. The improvement in dielectric properties of Si@SiO2/PVDF and Si@SiO2@PS/PVDF composites can be ascribed to the facts that the insulating SiO2 and SiO2@PS shells effectively prevent the semi-conducting Si particles from direct contacting, thereby remarkably reducing the tanδ. The enhanced phase interfacial compatibility between the Si@SiO2 or Si@SiO2@PS and PVDF matrix reduces the interface defects and suppresses the local electrical field distortion, thereby improving Eb of the core-shell structured Si/PVDF composites. The prepared Si@SiO2@PS/PVDF composites with a high dielectric constant of 48 and tanδ of 0.07, Eb of 6 kV/mm, have potential applications in the field of microelectronic devices and power equipment.

     

  • loading
  • [1]
    DANG Z M, ZHENG M S, ZHA J W. 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications[J]. Small,2016,12(13):1688-1701. doi: 10.1002/smll.201503193
    [2]
    WANG Z, HAN N M, WU Y, et al. Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers[J]. Carbon,2017,123:385-394. doi: 10.1016/j.carbon.2017.07.079
    [3]
    ZHOU W Y, KOU Y J, YUAN M X, et al. Polymer composites filled with core@double-shell structured fillers: Effects of multiple shells on dielectric and thermal properties[J]. Composites Science and Technology,2019,181:107686. doi: 10.1016/j.compscitech.2019.107686
    [4]
    CHEN Y, ZHANG H B, YANG Y B, et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding[J]. Advanced Functional Materials,2016,26(3):447-455. doi: 10.1002/adfm.201503782
    [5]
    DANG Z M, WANG L, WANG H Y, et al. Rescaled temperature dependence of dielectric behavior of ferroelectric polymer composites[J]. Applied Physics Letters,2005,86(17):172905.
    [6]
    QI L, LEE B I, CHEN S, et al. High-dielectric-constant silver-epoxy composites as embedded dielectrics[J]. Advanced Materials,2005,17(14):1777-1781. doi: 10.1002/adma.200401816
    [7]
    HE F, LAU S, CHAN H L, et al. High dielectric percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates[J]. Advanced Materials,2009,21(6):710-715. doi: 10.1002/adma.200801758
    [8]
    ZHAO Y H, LUO L, TANG H F, et al. Preparation of high-k composites with low dielectric loss based on the double-layer coaxial structure of inorganic/polymer[J]. Journal of Applied Polymer Science,2018,135(21):46299. doi: 10.1002/app.46299
    [9]
    WANG L, DANG Z M. Carbon nanotube composites with high delectric constant at low percolation threshold[J]. Applied Physics Letters,2005,87(4):042903. doi: 10.1063/1.1996842
    [10]
    WU Y, LIN X, SHEN X, et al. Exceptional dielectric properties of chlorine-doped graphene oxide/poly(vinylidene fluoride) nanocomposites[J]. Carbon,2015,89:102-112. doi: 10.1016/j.carbon.2015.02.074
    [11]
    ZHOU W Y, GONG Y, TU L, et al. Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites[J]. Journal of Alloys <italic>&</italic> Compounds,2017,693:1-8.
    [12]
    WANG D, BAO Y, ZHA J W, et al. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene[J]. ACS Applied Materials <italic>&</italic> Interfaces,2012,4(11):6273-6279. doi: 10.1021/am3018652
    [13]
    GONG Y, ZHOU W Y, WANG Z J, et al. Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer[J]. Journal of Materials Science <italic>&</italic> Technology,2018,34(12):2415-2423.
    [14]
    LI Y, HUANG X, HU Z, et al. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites[J]. ACS Applied Materials <italic>&</italic> Interfaces,2011,3(11):4396-4403.
    [15]
    WEI H, WU Y, LUN N, et al. Preparation and photocatalysis of TiO<sub>2</sub> nanoparticles co-doped with nitrogen and lanthanum[J]. Journal of Materials Science,2004,39(4):1305-1308. doi: 10.1023/B:JMSC.0000013889.63705.f3
    [16]
    XIE L, HUANG X, HUANG Y, et al. Core@double-shell structured BaTiO<sub>3</sub>-polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application[J]. Journal of Physical Chemistry C,2013,117(44):22525-22537. doi: 10.1021/jp407340n
    [17]
    XU X L, YANG C J, YANG J H, et al. Excellent dielectric properties of poly(vinylidene fluoride) composites based on partially reduced graphene oxide[J]. Composites Part B: Engineering,2017,109:91-100. doi: 10.1016/j.compositesb.2016.10.056
    [18]
    LI Q, HAN K, GADINSKI M R, et al. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites[J]. Advanced Materials,2014,26(36):6244-6249. doi: 10.1002/adma.201402106
    [19]
    THAKA T, KOZAKO M, FUSE N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):669-681. doi: 10.1109/TDEI.2005.1511092
    [20]
    XU H P, DANG Z M, JIANG M J, et al. Enhanced dielectric properties and positive temperature coeffcient effect in the binary polymer composites with surface modified carbon black[J]. Journal of Materials Chemistry,2008,18(2):229-234. doi: 10.1039/B713857A
    [21]
    LIU L P, LV F Z, ZHANG Y H, et al. Enhanced dielectric performance of polyimide composites with modified sandwich-like SiO<sub>2</sub>@GO hybrids[J]. Composites Part A: Applied Science and Manufacturing,2017,99:41-47. doi: 10.1016/j.compositesa.2017.03.029
    [22]
    DANG Z M, YUAN J K, ZHA J W, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites[J]. Progress in Materials Science,2012,57(4):660-672. doi: 10.1016/j.pmatsci.2011.08.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (843) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return