Volume 37 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
DENG Zongcai, YAO Junsuo. Axial compression behavior of ultra-high performance concrete columns confined by high-strength stirrups[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2590-2601. doi: 10.13801/j.cnki.fhclxb.20200203.002
Citation: DENG Zongcai, YAO Junsuo. Axial compression behavior of ultra-high performance concrete columns confined by high-strength stirrups[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2590-2601. doi: 10.13801/j.cnki.fhclxb.20200203.002

Axial compression behavior of ultra-high performance concrete columns confined by high-strength stirrups

doi: 10.13801/j.cnki.fhclxb.20200203.002
  • Received Date: 2019-11-08
  • Accepted Date: 2019-12-20
  • Available Online: 2020-02-04
  • Publish Date: 2020-10-15
  • Based on the axial compression test of 5 ultra-high performance concrete (UHPC) columns confined by high-strength stirrups and 4 UHPC columns confined by normal-strength stirrups, the bearing capacity, failure mode, steel strain and stress-strain curve for the confined UHPC columns were studied, and the influences of volume stirrup ratio, strength, spacing and configuration of stirrup on the axial compression behavior of confined UHPC were analyzed by combining ductility and toughness index. The results show that all the specimens have ductility damages, and the damage degree of UHPC columns confined by high-strength stirrups is lighter. The confined UHPC columns with high volume stirrup ratio, closely spaced, high-strength and complex ties configuration have good confinement efficiency, bearing capacity and deformation performance, which also leads to an ideal axial compression behavior. The effect of volume stirrup ratio on the axial compression behavior of specimens is greater than that of stirrup strength. Among the three factors affecting the volume stirrup ratio, such as spacing, configuration and diameter of stirrup, the stirrup spacing contributes most to the improvement of confinement performance, followed by the configuration and diameter of stirrup. The UHPC confined by high-strength stirrups presents better axial compression performance and residual bearing capacity than the normal-stirrups. The micro-bending of the longitudinal bars accelerates the cover spalling, while the high-strength stirrups with close space effectively delays the buckling of longitudinal bars, and significantly improves the overall performance of the confined UHPC. The micro-bending of longitudinal bars weakens the confine effect of the high-strength stirrups on the core UHPC, and the combination of high-strength longitudinal bars and stirrups is suggested. Based on the test data, the formulas to determine the bearing capacity of UHPC columns confined by stirrups are drawn.

     

  • loading
  • [1]
    覃维祖, 曹峰. 一种超高性能混凝土—活性粉末混凝土[J]. 工业建筑, 1999, 29(4):16-18. doi: 10.3321/j.issn:1000-8993.1999.04.005

    QIN Weizu, CAO Feng. A new ultra-high performance concrete-reactive powder concrete[J]. Industrial Construction,1999,29(4):16-18(in Chinese). doi: 10.3321/j.issn:1000-8993.1999.04.005
    [2]
    邓宗才, 姚军锁. 箍筋约束超高性能混凝土柱受压性能研究进展[J]. 建筑科学与工程学报, 2020, 37(1):14-25.

    DENG Zongcai, YAO Junsuo. Research progress on compressive behavior of stirrup-confined ultra-high performance concrete columns[J]. Journal of Architecture and Civil Engineering,2020,37(1):14-25(in Chinese).
    [3]
    邓宗才, 姚军锁. 高强钢筋约束超高性能混凝土柱轴心受压本构模型研究[J]. 工程力学, 2020, 37(5):120-128.

    DENG Zongcai, YAO Junsuo. The axial compression stress-strain model for ultra-high performance concrete columns confined by high-strength stirrups[J]. Engineering Mechanics,2020,37(5):120-128(in Chinese).
    [4]
    周文峰, 鲁瑛. 约束混凝土文献综述[J]. 四川建筑科学研究, 2007, 33(3):144-146. doi: 10.3969/j.issn.1008-1933.2007.03.040

    ZHOU Wenfeng, LU Ying. The summarization of literature of confined concrete[J]. Sichuan Building Science,2007,33(3):144-146(in Chinese). doi: 10.3969/j.issn.1008-1933.2007.03.040
    [5]
    HOSINIEH M M, AOUDE H, COOK W D, et al. Behavior of ultra-high performance fiber reinforced concrete columns under pure axial loading[J]. Engineering Structures,2015,99:388-401. doi: 10.1016/j.engstruct.2015.05.009
    [6]
    AARUP B, JENSEN L R, APS H C, et al. Slender CRC columns[J]. Nordic Concr Res,2005,34:80-97.
    [7]
    SUGANO S, KIMURA H, SHIRAI K. Study of new RC structures using ultra-high-strength fiber-reinforced concrete (UFC)-The challenge of applying 200 MPa UFC to earthquake resistant building structures[J]. Journal of Advanced Concrete Technology,2007,5(2):133-147. doi: 10.3151/jact.5.133
    [8]
    EMPELMANN M, TEUTSCH M, STEVEN G. Load-bearing behavior of centrically loading UHPFRC columns[C]// Proceedings of the Second International Symposium on Ultra High Performance Concrete. Kassel: University of Kassel, Germany, 2008: 521-528.
    [9]
    EMPELMANN M, TEUTSCH M, STEVEN G. Expanding the application range of RC-columns by the use of UHPC[C]// Tailor Made Concrete Structures. London: CRC Press, 2008: 461-468.
    [10]
    STEVEN G, EMPELMANN M. UHPFRC-columns with high-strength longitudinal reinforcement[J]. Betonund Stahlbetonbau,2014,109(5):344-354. doi: 10.1002/best.201300090
    [11]
    YANG X, ZOHREVAND P, MIRMIRAN A. Behavior of ultrahigh-performance concrete confined by steel[J]. Journal of Materials in Civil Engineering,2016,28(10):04016113. doi: 10.1061/(ASCE)MT.1943-5533.0001623
    [12]
    唐昌辉, 刘冬明. 活性粉末混凝土柱轴心受压试验研究[J]. 中国科技论文, 2016, 11(1):7-11. doi: 10.3969/j.issn.2095-2783.2016.01.002

    TANG Changhui, LIU Dongming. Experimental study on reactive powder concrete columns under uniaxial compression[J]. China Sciencepaper,2016,11(1):7-11(in Chinese). doi: 10.3969/j.issn.2095-2783.2016.01.002
    [13]
    SHIN H O, MIN K H, MITCHELL D. Confinement of ultra-high-performance fiber reinforced concrete columns[J]. Composite Structures,2017,176:124-142. doi: 10.1016/j.compstruct.2017.05.022
    [14]
    SHIN H O, MIN K H, MITCHELL D. Uniaxial behavior of circular ultra-high-performance fiber-reinforced concrete columns confined by spiral reinforcement[J]. Construction and Building Materials,2018,168:379-393. doi: 10.1016/j.conbuildmat.2018.02.073
    [15]
    吴炎海, 何雁斌, 杨幼华. 活性粉末混凝土(RPC200)的力学性能[J]. 福州大学学报(自然科学版), 2003, 31(5):598-602.

    WU Yanhai, HE Yanbin, YANG Youhua. Investigation on RPC200 mechanical performance[J]. Journal of Fuzhou University (Natural Science),2003,31(5):598-602(in Chinese).
    [16]
    过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京: 清华大学出版社, 2007.

    GUO Zhenhai, SHI Xudong. Reinforced concrete theory and analyse[M]. Beijing: Tsinghua University Press, 2007(in Chinese).
    [17]
    郭晓宇, 亢景付, 朱劲松. 超高性能混凝土单轴受压本构关系[J]. 东南大学学报(自然科学版), 2017, 47(2):369-376. doi: 10.3969/j.issn.1001-0505.2017.02.028

    GUO Xiaoyu, KANG Jingfu, ZHU Jinsong. Constitutive relationship of ultrahigh performance concrete under uniaxial compression[J]. Journal of Southeast University (Natural Science Edition),2017,47(2):369-376(in Chinese). doi: 10.3969/j.issn.1001-0505.2017.02.028
    [18]
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010-2010[S]. 北京: 中国建筑工业出版社, 2011.

    Housing and Urban-rural Development of the People’s Republic of China. Code for design of concrete structures: GB50010—2010[S]. Beijing: China Architecture and Building Press, 2011(in Chinese).
    [19]
    贾方方. 钢筋与活性粉末混凝土粘结性能的试验研究[D]. 北京: 北京交通大学, 2013.

    JIA Fangfang. Experimental study on bond properties between steel bar and reactive powder concrete[D]. Beijing: Beijing Jiaotong University, 2013(in Chinese).
    [20]
    赵作周, 钱稼茹, 贺小岗, 等. 箍筋约束高强混凝土受压应力-应变本构关系[J]. 建筑结构学报, 2014, 35(5):96-103.

    ZHAO Zuozhou, QIAN Jiaru, HE Xiaogang, et al. Stress-strain relationship of stirrup-confined high-strength concrete[J]. Journal of Building Structures,2014,35(5):96-103(in Chinese).
    [21]
    丁红岩, 刘源, 邱实. 高强箍筋约束高强混凝土轴心受压试验研究[J]. 建筑结构, 2015(12):7-12.

    DING Hongyan, LIU Yuan, QIU Shi. Experimental study on axial compression of high-strength concrete confined by high-strength stirrup[J]. Building Structure,2015(12):7-12(in Chinese).
    [22]
    SHEIKH S A, UZUMERI S M. Analytical model for concrete confinement in tied columns[J]. Journal of the Structural Division,1982,108(12):2703-2722.
    [23]
    MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
    [24]
    史庆轩, 杨坤, 刘维亚, 等. 高强箍筋约束高强混凝土轴心受压力学性能试验研究[J]. 工程力学, 2012, 29(1):141-149.

    SHI Qingxuan, YANG Kun, LIU Weiya, et al. Experimental study on mechanical behavior of high strength concrete confined by high-strength stirrups under concentric loading[J]. Engineering Mechanics,2012,29(1):141-149(in Chinese).
    [25]
    杨坤, 史庆轩, 赵均海, 等. 高强箍筋约束高强混凝土本构模型研究[J]. 土木工程学报, 2013, 46(1):34-41.

    YANG Kun, SHI Qingxuan, ZHAO Junhai, et al. Study on the constitutive model of high-strength concrete confined by high-strength stirrups[J]. China Civil Engineering Journal,2013,46(1):34-41(in Chinese).
    [26]
    RICHART F E. Reinforced concrete wall and column footings[J]. ACI Journal Proceedings,1948,45(10):97-127.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(3)

    Article Metrics

    Article views (1322) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return