Volume 37 Issue 10
Oct.  2020
Turn off MathJax
Article Contents
YANG Guirong, WANG Ning, SONG Wenming, et al. Fabrication and formation mechanism of vacuum cladding WC-graphene oxide /Ni composite coating[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2489-2500. doi: 10.13801/j.cnki.fhclxb.20200203.001
Citation: YANG Guirong, WANG Ning, SONG Wenming, et al. Fabrication and formation mechanism of vacuum cladding WC-graphene oxide /Ni composite coating[J]. Acta Materiae Compositae Sinica, 2020, 37(10): 2489-2500. doi: 10.13801/j.cnki.fhclxb.20200203.001

Fabrication and formation mechanism of vacuum cladding WC-graphene oxide /Ni composite coating

doi: 10.13801/j.cnki.fhclxb.20200203.001
  • Received Date: 2019-11-06
  • Accepted Date: 2019-12-20
  • Available Online: 2020-02-04
  • Publish Date: 2020-10-15
  • WC-graphene oxide(GO)/Ni composite coating was fabricated by vacuum cladding technique. The microstructural change and phase composition of the coating at different temperatures were observed and analyzed by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometer. The results show that the WC-GO/Ni composite coating with dense microstructure and good metallurgical fusion with the matrix was successfully fabricated on the ZG45 substrate. There are four sub-layers from the coating surface to substrate, they are composite layer with about 1.5 mm thickness, transition layer with about 360 μm thickness, diffusion fusion layer with about 50 μm thickness and diffusion affected layer with 100 μm thickness. The main phases of WC-GO/Ni composite coating are Cr7C3, FeNi3, WC, Cr23C6, Ni3Si, C, Fe7W6, γ-Ni solid solution. FeNi3 and Fe7W6 are dispersed in the metallurgical fusion zone, and the main phase of the diffusion affected zone is pearlite. The phase size of the composite zone is smaller than that of the interface zone. The changing of metal particles at composite area precedes that at the interface area. The clusters (Cr7C3/Cr23C6) formed on the incompletely melted metal particles surface and grew into needle shape. The needle carbides are embedded in the Ni-based solid solution among the coating.

     

  • loading
  • [1]
    王智慧, 杨爱弟, 贺定勇, 等. 真空熔覆镍基合金涂层中碳化钨颗粒转变行为[J]. 稀有金属材料与工程, 2008, 37(10):1869-1871. doi: 10.3321/j.issn:1002-185X.2008.10.039

    WANG Z H, YANG A D, HE D Y, et al. Transformation behavior of tungsten carbide particles in vacuum cladding nickel-based alloy coatings[J]. Rare Metal Materials and Engineering,2008,37(10):1869-1871(in Chinese). doi: 10.3321/j.issn:1002-185X.2008.10.039
    [2]
    ESO O, FANG Z, GRIFFO A. Liquid phase sintering of functionally graded WC-Co composites[J]. International Journal of Refractory Metals & Hard Materials,2005,23(2):233-241. doi: 10.1016/j.ijrmhm.2005.04.017
    [3]
    ESO O, FANG Z, GRIFFO A. Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC-Co[J]. International Journal of Refractory Metals & Hard Materials,2008,25(4):286-292.
    [4]
    杨贵荣, 高大文, 宋文明, 等. 45钢表面Ni/WC复合熔覆层的形成机制[J]. 材料研究学报, 2019, 33(2):87-94. doi: 10.11901/1005.3093.2018.510

    YANG G R, GAO D W, SONG W M, et al. Formation mechanism of Ni/WC composite cladding layer on 45 steel surface[J]. Chinese Journal of Materials Research,2019,33(2):87-94(in Chinese). doi: 10.11901/1005.3093.2018.510
    [5]
    YANG G R, HUANG C P, SONG W M, et al. Microstructure character-istics of Ni/WC composite cladding coatings[J]. International Journal of Refractory Metals & Hard Materials,2016,23(2):184-192. doi: 10.1007/s12613-016-1226-z
    [6]
    BANSAL A, ZAFAR S, SHARMA A K. Microstructure and abrasive wear performance of Ni-WC composite microwave clad[J]. Journal of Materials Engineering & Performance,2015,24(10):1-9.
    [7]
    PAATSCH W. Energy turnaround-A challenge for surface technology[J]. Transactions of the IMF,2016,94(5):228-230. doi: 10.1080/00202967.2016.1209295
    [8]
    刘喜明. Ni基合金+WC激光熔覆层再加热时的显微组织变化特性[J]. 应用激光, 2006, 26(6):381-384. doi: 10.3969/j.issn.1000-372X.2006.06.006

    LIU X M. Microstructure changes of Ni-based alloy+WC laser cladding layer during reheating[J]. Applied Laser,2006,26(6):381-384(in Chinese). doi: 10.3969/j.issn.1000-372X.2006.06.006
    [9]
    GAO Y, LUOB H, HE K J, et al. Mechanical properties and microstructure of WC-Fe-Ni-Co cemented carbides prepared by vacuum sintering[J]. Vacuum,2017,143:271-282. doi: 10.1016/j.vacuum.2017.06.028
    [10]
    GAO Y, LUOB H, HE K J, et al. Effect of Fe/Ni ratio on the microstructure and properties of WC-Fe-Ni-Co cemented carbides[J]. Ceramics International,2018,44(2):2030-2041. doi: 10.1016/j.ceramint.2017.10.148
    [11]
    ELKHOSHKHANY N, HAFNWAY A, KHALED A. Electrodeposition and corrosion behavior of nano-structured Ni-WC and Ni-Co-WC composite coating[J]. Journal of Alloys and Compounds,2017,695:1505-1514. doi: 10.1016/j.jallcom.2016.10.290
    [12]
    WANG J Y, PENG C, TANG J, et al. Friction and wear characteristics of hot-pressed sintered NiCr-WC-Al2O3 compo-sites with a certain amount of graphene at different temperatures[J]. Journal of Alloys and Compounds,2018,737:515-529. doi: 10.1016/j.jallcom.2017.11.101
    [13]
    SIMUNOVIC K, SARIC T, SIMUNOVIC G. Different approaches to the investigation and testing of the Ni-based self-fluxing alloy coatings a review. Part 1. General facts, wear and corrosion investigations[J]. Tribology Transactions,2014,57(6):955-979. doi: 10.1080/10402004.2014.927547
    [14]
    PARK Y S, BAE D H. Assessment of the crack growth characteristics at the low fatigue limit of a multi-pass welded Ni-based alloy 617[J]. Journal of Mechanical Science and Technology,2014,28(4):1251-1256. doi: 10.1007/s12206-014-0116-4
    [15]
    GUO C, CHEN J M, ZHOU J C, et al. Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating[J]. Surface & Coatings Technology,2012,206(8-9):2064-2071. doi: 10.1016/j.surfcoat.2011.06.005
    [16]
    GUO C, ZHOU J S, CHEN J M, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings[J]. Wear,2011,270(7):492-498. doi: 10.1016/j.wear.2011.01.003
    [17]
    叶宏, 喻文新, 雷临萍, 等. H13钢表面激光熔覆Ni基涂层的组织与耐磨性能[J]. 特种铸造及有色合金, 2016, 36(7):690-693.

    YE H, YU W X, LEI L P, et al. Microstructure and wear resistance of laser cladding Ni-based coatingon H13 steel surface[J]. Special Casting & Nonferrous Alloys,2016,36(7):690-693(in Chinese).
    [18]
    MAHMOUDI B, TURY B, HAGER C H, et al. Effects of black oxide and a WC-C coating on the micropitting of SAE 52100 bearing steel[J]. Tribology Letters,2015,58(2):20-26. doi: 10.1007/s11249-015-0494-5
    [19]
    王盘鑫. 粉末冶金学[M]. 北京: 冶金工业出版社, 2005.

    WANG P X. Powder metallurgy[M]. Beijing: Metallurgical Industry Press, 2005(in Chinese).
    [20]
    杨柳, 苗媛媛, 刘镇波. 氧化石墨烯复合材料及其性能研究[J]. 中国胶粘剂, 2018, 27(6):42-47.

    YANG L, MIAO Y Y, LIU Z B. Study on graphene oxide composites and their properties[J]. China Adhesives,2018,27(6):42-47(in Chinese).
    [21]
    崔忠圻, 覃耀春. 金属学与热处理[M]. 第2版. 北京: 机械工业出版社, 2007.

    CUI Z Q, TAN Y C. Metallography and heat treatment[M]. 2nd Ed. Beijing: China Machine Press, 2007(in Chinese).
    [22]
    潘金生, 仝健民, 田民波. 材料科学基础[M]. 北京: 清华大学出版社, 2011.

    PAN J S, TONG J M, TIAN M B. Material science foundation[M]. Beijing: Tsinghua University Press, 2011(in Chinese).
    [23]
    袁有录, 李铸国. Ni60A+WC增强梯度涂层中WC的溶解与碳化物的析出特征[J]. 材料工程, 2013(11):12-19. doi: 10.3969/j.issn.1001-4381.2013.11.003

    YUAN Y L, LI Z G. Dissolving and precipitating characteristics of WC and carbides in the Ni60A+WC graded coating[J]. Journal of Materials Engineering,2013(11):12-19(in Chinese). doi: 10.3969/j.issn.1001-4381.2013.11.003
    [24]
    王智慧, 杨爱弟, 张田, 等. 真空熔覆WC颗粒增强复合涂层中WC溶解行为的研究[J]. 材料工程, 2008(9):59-62, 66. doi: 10.3969/j.issn.1001-4381.2008.09.015

    WANG Z H, YANG A D, ZHANG T, et al. Dissolution behavior of WC in WC reinforced composite coatings[J]. Journal of Materials Engineering,2008(9):59-62, 66(in Chinese). doi: 10.3969/j.issn.1001-4381.2008.09.015
    [25]
    ZHANG Z, LIU H X, ZHANG X W, et al. Dissolution behavior of WC reinforced particles on carbon steel surface during laser cladding process[J]. Advanced Materials Research,2012,430-432:137-141. doi: 10.4028/www.scientific.net/AMR.430-432.137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (739) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return